To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.
The trajectory equation from the motion kinematic equations is given by

Where,
a = acceleration
t = time
= Initial velocity
= initial position
In addition to this we know that speed, speed is the change of position in relation to time. So

x = Displacement
t = time
With the data we have we can find the time as well




With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,





Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.
The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:

Now, substituting and calculating, we have:


Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
Answer:
it is light
Explanation:
the arrow that says light is on the glass it must be near from tungsten
The height above the ground from where the skier start is 11.5 m.
<h3>
Conservation of energy</h3>
The height above the ground from where the skier start is determined by applying the principle of conservation of energy as shown below;
P.E = K.E
mgh = ¹/₂mv²
gh = ¹/₂v²

Thus, the height above the ground from where the skier start is 11.5 m.
Learn more about conservation of energy here: brainly.com/question/166559
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>