1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bonufazy [111]
3 years ago
9

Consider a guanabana (5.8 kg) falling from its branch. How much kinetic energy (in joules) does it gain during the time needed f

or it to drop 6.0 m?
Physics
1 answer:
zaharov [31]3 years ago
4 0

Answer:

The Kinetic Energy of the guanabana is, K.E = 341.04 J

Explanation:

Given data,

The mass of the guanabana, m = 5.8 kg

The height of the fruit from the ground, h = 6 m

Let the potential energy at the ground be 0

<em>According to the law of conservation of energy, the total energy of a system is conserved.</em>

So, when the guanabana reaches the ground, the P.E is fully converted into K.E

The P.E at height h is

                            P.E = mgh

                                   = 5.8 x 9.8 x 6

                                    = 341.04 J

At ground 6 m drop,

                             P.E = K.E

Therefore, the Kinetic Energy of the guanabana is, K.E = 341.04 J                                                      

You might be interested in
light of a wavelength 600 nm shines on a soap bubble film. For what soap film thickness will destructive interference occur
VashaNatasha [74]

Answer:

The minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.

Explanation:

Given;

wavelength of light, λ = 600 nm

The minimum thickness of the soap bubble for destructive interference to occur is given by;

t = \frac{\lambda/n}{2}\\\\t = \frac{\lambda}{2n}

where;

n is refractive index of soap film = 1.33

t = \frac{\lambda}{2n} \\\\t = \frac{600*10^{-9}}{2(1.33)}\\\\t = 2.2556 *10^{-7} \ m\\\\t =  225.56 *10^{-9} \ m\\\\t = 225.56 \ nm

Therefore, the minimum thickness of the soap bubble for destructive interference to occur is 225.56 nm.

4 0
3 years ago
A spring is 6.0cm long when it is not stretched, and 10cm long when a 7.0N force is applied. What force is needed to make it 20c
Artist 52 [7]

Answer:

Approximately 25\; {\rm N} (assuming that this spring is ideal.)

Explanation:

The displacement of a spring is the new length of the spring relative to the original length.

For example:

  • When the 6.0\; {\rm cm}-spring in this question is stretched to 10\; {\rm cm}, the displacement is x = (10\; {\rm cm} - 6.0\; {\rm cm}).
  • Likewise, if this spring is stretched to 20\; {\rm cm}, the displacement would be (20\; {\rm cm} - 6\; {\rm cm}).

If this spring is ideal, the force on the spring would be proportional to the displacement of the spring. In other words, if a force of F_{\text{a}} displaces this spring by x_{\text{a}}, while a force of F_{\text{b}} displaces this spring by x_{\text{b}}, then:

\displaystyle \frac{F_{\text{a}}}{x_{\text{a}}} = \frac{F_{\text{b}}}{x_{\text{b}}}.

In this question, it is given that a force of F_{\text{a}} = 7.0 \; {\rm N} would stretch this spring by x_{\text{a}} = (10\; {\rm cm} - 6.0\; {\rm cm}). Thus, the force F_{\text{b}} required to stretch this spring by x_{\text{a}} = (20\; {\rm cm} - 6.0\; {\rm cm}) would satisfy:

\displaystyle \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}}= \frac{F_{\text{b}}}{20\; {\rm cm} - 6.0\; {\rm cm}}.

Rearrange and solve for F_{\text{b}}:

\begin{aligned} F_{\text{b}} &= \frac{7.0\; {\rm N}}{10\; {\rm cm} - 6.0\; {\rm cm}} \, (20\; {\rm cm} - 6.0\; {\rm cm}) \\ &\approx 25\; {\rm N}\end{aligned}.

7 0
2 years ago
a water-balloon launcher with mass 4 kg fires a 0.5 kg balloon with a velocity of 3 m/s to the east. what is the recoil velocity
kotykmax [81]
I think we will use the law of conservation of linear momentum;
M1V1 = M2V2
M1 =  4 kg (mass of the water balloon launcher)
V1=?
M2= 0.5 kg ( mass of the balloon)
V2 = 3 m/s

Therefore; 4 V1 = 0.5 × 3
                   4V1= 1.5
                     V1= 1.5/4
                          = 0.375 m/s










5 0
3 years ago
Read 2 more answers
A mother pats a child every time he throws a chocolate wrapper in the dustbin. This is an example of (A) Observational Learning
TEA [102]
D. I think, not sure
8 0
4 years ago
A reasonable estimate of the moment of inertia of an ice skater spinning with her arms at her sides can be made by modeling most
Oxana [17]

Answer:

A)  I_{total} = 1.44 kg m², B) moment of inertia must increase

Explanation:

The moment of inertia is defined by

     I = ∫ r² dm

For figures with symmetry it is tabulated, in the case of a cylinder the moment of inertia with respect to a vertical axis is

      I = ½ m R²

A very useful theorem is the parallel axis theorem that states that the moment of inertia with respect to another axis parallel to the center of mass is

    I = I_{cm} + m D²

Let's apply these equations to our case

The moment of inertia is a scalar quantity, so we can add the moment of inertia of the body and both arms

      I_{total}=I_{body} + 2 I_{arm}

       I_{body} = ½ M R²

The total mass is 64 kg, 1/8 corresponds to the arms and the rest to the body

       M = 7/8 m total

       M = 7/8 64

       M = 56 kg

The mass of the arms is

      m’= 1/8 m total

      m’= 1/8 64

      m’= 8 kg

As it has two arms the mass of each arm is half

     m = ½ m ’

     m = 4 kg

The arms are very thin, we will approximate them as a particle

    I_{arm} = M D²

Let's write the equation

     I_{total} = ½ M R² + 2 (m D²)

Let's calculate

    I_{total} = ½ 56 0.20² + 2 4 0.20²

    I_{total} = 1.12 + 0.32

    I_{total} = 1.44 kg m²

b) if you separate the arms from the body, the distance D increases quadratically, so the moment of inertia must increase

6 0
4 years ago
Other questions:
  • Which phase of matter has the MOST Kinetic Energy?
    10·2 answers
  • 1
    6·1 answer
  • In which situation is the maximum possible work done?
    6·1 answer
  • A 43-N crate is suspended from the left end of a plank. The plank weighs 21 N, but it is not uniform, so its center of gravity d
    11·1 answer
  • A constant force is exerted for a short distance on a block of mass that is initially at rest on a horizontal frictionless plane
    12·1 answer
  • A 400-n block is dragged along a horizontal surface by an applied force as shown. the coefficient of kinetic friction is uk = 0.
    10·1 answer
  • 8. An ant on a picnic table travels 30 cm eastward, then 25 cm northward, and finally 15 cm westward. What is the ant's displace
    10·1 answer
  • A spaceship accelerates from 0m/s to 40m/s in 5 seconds. What is the acceleration of the spaceship
    7·1 answer
  • A solid cylinder of mass 12.0 kgkg and radius 0.250 mm is free to rotate without friction around its central axis. If you do 75.
    15·1 answer
  • Amber is a<br>(a) metal<br>(b) rubber<br>(c) resin<br>(d) sugar<br>​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!