There are 1.92 × 10^23 atoms Mo in the cylinder.
<em>Step 1</em>. Calculate the <em>mass of the cylinder
</em>
Mass = 22.0 mL × (8.20 g/1 mL) = 180.4 g
<em>Step 2</em>. Calculate the<em> mass of Mo
</em>
Mass of Mo = 180.4 g alloy × (17.0 g Mo/100 g alloy) = 30.67 g Mo
<em>Step 3</em>. Convert <em>grams of Mo</em> to <em>moles of Mo
</em>
Moles of Mo = 30.67 g Mo × (1 mol Mo/95.95 g Mo) = 0.3196 mol Mo
<em>Step 4</em>. Convert <em>moles of M</em>o to <em>atoms of Mo
</em>
Atoms of Mo = 0.3196 mol Mo × (6.022 × 10^2<em>3</em> atoms Mo)/(1 mol Mo)
= 1.92 × 10^23 atoms Mo
The scientist can analyze that data and help other scientists with his research
Answer:
The correct answer is option c.
Explanation:
Alkanes with higher molecular mass has higher boiling point.
Thisis because when the molar mass of the alkanes increases the the surface area increases with which van der Waals forces between the molecules of alkane also increase which increases the association of the molecules of with each other which results in increase in boiling point is observed.
The increasing order of the molar mass of the given alkanes;

So out of ethane, pentane and heptane . Heptane has highest molecular mass with higher boiling point value. Where as ethane have the lowest value of boiling point.
Answer:
The correct answer is CaO > LiBr > KI.
Explanation:
Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.
With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.
The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.
Answer: The correct answer is A
Explanation:
On addition of the ammonium nitrate to 50 ml of water the temperature decreases which means that reaction between the ammonium nitrate and water is an endothermic reaction.The value of
is positive for an endothermic reactions.

Entropy is a degree of randomness of the system.
On addition of the ammonium nitrate to water ammonium nitrate break down into ions which means that entropy is increased.

(Gibb's free energy)
Since, ammonium nitrate is getting dissolved in water which means that this reaction is spontaneous and
of spontaneous reaction is negative that is:
