Explanation:
In the molecular equation for a reaction, all of the reactants and products are represented as neutral molecules (even soluble ionic compounds and strong acids). In the complete ionic equation, soluble ionic compounds and strong acids are rewritten as dissociated ions.
The net ionic equation is a chemical equation for a reaction that lists only those species participating in the reaction. The net ionic equation is commonly used in acid-base neutralization reactions, double displacement reactions, and redox reactions.
Answer:
MIXTURE
Explanation:
A mixture is a substance composed of a combination of other different substances. These component(s) of a mixture are physically combined, meaning that there is no chemical linkage between the individual components/constituents of a mixture.
This is the case of the gravel described in this question. The components of gravel can be separated using physical means because they are not chemically bonded to one another, hence, no chemical reactions are needed to separate different parts of gravel into pure substances. This makes gravel a MIXTURE.
Answer:
See Explanation
Explanation:
The question is incomplete; as the mixtures are not given.
However, I'll give a general explanation on how to go about it and I'll also give an example.
The percentage of a component in a mixture is calculated as:

Where
E = Amount of element/component
T = Amount of all elements/components
Take for instance:
In 
The amount of all elements is: (i.e formula mass of
)



The amount of calcium is: (i.e formula mass of calcium)



So, the percentage component of calcium is:




The amount of hydrogen is:



So, the percentage component of hydrogen is:




Similarly, for oxygen:
The amount of oxygen is:



So, the percentage component of oxygen is:




Copper choruses purpose is its used as a catalyst for organic and inorganic reactions , mordant for dyeing and printing textiles, pigment for glass and ceramics, wood preservative, disinfectant, insecticide, fungicide, and herbicide. (Not sure if you want the actual purpose of water or not)
An increase in temperature will increase the average kinetic energy of the molecules. As the particles move faster, they will likely hit the edge of the container more often.