Answer:
Hydrofluoric acid.
Explanation:
To know which of the acid is the strongest, let us determine the pka of each acid. This is illustrated below:
1. Acetic acid
Ka = 1.8x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 1.8x10^-5
pKa = 4.74
2. Benzoic acid
Ka = 6.5x10^-5
pKa =..?
pKa = –logKa
pKa = –Log 6.5x10^-5
pKa = 4.18
3. Hydrofluoric acid.
Ka = 6.8x10^-4
pKa =..?
pKa = –logKa
pKa = –Log 6.8x10^-4
pKa = 3.17
4. Hypochlorous acid
Ka = 3.0x10^-8
pKa =..?
pKa = –logKa
pKa = –Log 3.0x10^-8
pKa = 7.52
Note: the smaller the pKa value, the stronger the acid.
The pka of the various acids as calculated above is given below:
Acid >>>>>>>>>>>>>>>>>> pKa
1. Acetic acid >>>>>>>>>> 4.74
2. Benzoic acid >>>>>>>> 4.18
3. Hydrofluoric acid >>>> 3.17
4. Hypochlorous acid >> 7.52
From the above illustration, we can see that hydrofluoric acid has the lowest pKa value. Therefore, hydrofluoric acid is the strongest among them.
Stoichiometry is the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers. Hoped this helped!!!!. Also if you are trying to look for the formulas it should be online just type in stoichometry formulas.
The longest hydrocarbon chain in the given compound is hexane, therefore it is the parent chain to be considered with one methyl group attached to the 3rd carbon and one chloro attached on the 2nd carbon, therefore the name of the compound is 2-chloro-3-methylhexane
Long term because if you leave something out to be weathered then it can’t be unweathered because of the drastic change of the object.
Answer:
Hydrogen Bond
Explanation:
Hydrogen bond interactions are formed between the hydrogen atom bonded to most electronegative atoms (i.e. F, O and N) of one molecule and most electronegative atom (i.e. F, O and N) of another molecule.
In this interaction the hydrogen atom has partial positive charge and electronegative atom has partial negative charge.