Answer:
hydrogen ions
Explanation:
because acid is the specie that have ability to donate proton or forming bond with electron pair
Explanation:
CH₃CH₃ + Cl₂ → CH₃CH₂Cl + HCl
- This reaction take place in the presence of light/UV rays. (i.e, photochemical reaction)
- It's a Chlorination reaction because here there's addition of chlorine.
- It's a substitution reaction because Cl substituted H from place and attach there.
Option which is NOT correct is
Option A (It's not an elimination reaction)
Therefore,
Option A is correct✔
In this question we have given the gram of water and we know that 1 mole of water = 18 gram of water and 27 g of water contain 1.5 g of water 27 / 18 = 1.5 g
As we know that avogandro'S no is equal 6.022*1023
1.5g * 6.022*1023 = 9.0 * 1023 molecules present in each 27 g of water.
I hope you will understand better now if you like then comment below and tell me. Best of luck.
Addition of water to an alkyne gives a keto‑enol tautomer product and that is the product changed into 2-pentanone, then the alkyne need to had been 1-pentyne. 2-pentyne might have given a combination of 2- and 3-pentanone.
<h3>
What is the keto-enol means in tautomer?</h3>
They carries a carbonyl bond even as enol implies the presence of a double bond and a hydroxyl group. The keto-enol tautomerization equilibrium is depending on stabilization elements of each the keto tautomer and the enol tautomer.
- The enol that could provide 2-pentanone might had been pent-1- en - 2 -ol. Because an equilibrium favors the ketone so greatly, equilibrium isn't an excellent description.
- If the ketone have been handled with bromine, little response might be visible because the enol content material might be too low.
- If a catalyst have been delivered, NaOH for example, then formation of the enolate of pent-1-en - 2 - ol might shape and react with bromine.
- This might finally provide a bromoform product. Under acidic conditions, the enol might desire formation of the greater substituted enol constant with alkene stability.