<span>If the temperature increases in a sample of gas at constant volume, then its pressure increases. The increase in temperature makes the molecule hit the walls of the container faster. The correct option among all the options that are given in the question is the third option or option "c". I hope the answer helps you.</span>
iIn this case the mass of a body cannot be considered to be concentrated at the centre of mass of the body for the purpose of computing the rotational motion
Therefore the answer is False
Answer:
6 amps
Explanation:by Kirchhoff's loop rule the current at any point in the loop must be equal or charge would be building up. The current at the ammeter is equally to the total current through the sun of the paths in parallel which it is in series with
Answer:
a
Explanation:
The bar magnet moves downward with respect to the wire loop, so that the number of magnetic field lines going through the loop decreases with time. This causes an emf to be induced in the loop, creating an electric current.
in other words, the magnets motion creates a current in the loop
A distance of 10.8 cm beyond its natural length will a force of 30 N keep this spring stretched
<u>Explanation:</u>
Work, W = 2 J
Initial distance,
= 30 cm
Final distance, = 42 cm
Force, F = 30 N
Stretched length, x = ?
We know,
W = 1/2 kΔx²
Δx = 42-30 cm = 12 cm = 0.12 m
2 J = 1/2 k X (0.12)²
k = 277.77 N/m
According to Hooke's law,
F = kx
30 N = 277.77 X x
x = 0.108 m
x = 10.8 cm
A distance of 10.8 cm beyond its natural length will a force of 30 N keep this spring stretched.