The distance traveled by the sprinter in meters is determined as 1.88 m.
<h3>Acceleration of the sprinter</h3>
The acceleration of the sprinter is the rate of change of velocity of the sprinter with time.
The acceleration of the sprinter is calculated as follows;
Apply Newton's second law of motion as follows;
F = ma
a = F/m
where;
- F is the applied force by the sprinter
- m is mass of the sprinter
- a is acceleration of the sprinter
a = 693 N / 64 kg
a = 10.83 m/s²
<h3>Distance traveled by the sprinter</h3>
The distance traveled by the sprinter is calculated as follows;
s = ut + ¹/₂at²
where;
- u is initial velocity = 0
s = ¹/₂at²
where;
- t is time of motion
- a is acceleration
s = (0.5)(10.83)(0.59²)
s = 1.88 m
Thus, the distance traveled by the sprinter in meters is determined as 1.88 m.
Learn more about distance here: brainly.com/question/2854969
#SPJ1
Explanation:
1) Radar uses radio waves, which are a type of electromagnetic energy. Sonar uses the echo principle by sending out sound waves underwater or through the human body to locate objects. Sound waves are a type of acoustic energy. Because of the different type of energy used in radar and sonar, each has its own applications.
2)Radar systems operate using radio waves primarily in air, while sonar systems operate using sound waves primarily in water (Minkoff, 1991). Despite the difference in medium, similarities in the principles of radar and sonar can frequently result in technological convergence.
Answer:
water
Explanation:
coz out of the choices water is the only one that is not an element.
water formula is H2O
Smoother because it will increase energy and when the energy increases it’ll create heat also . Example: A car racing on a smooth road it’ll go faster than a Car speeding on a bumpy and rough road , Hope that helps .
The current is defined as the ratio between the charge Q flowing through a certain point of a wire and the time interval,

:

First we need to find the net charge flowing at a certain point of the wire in one second,

. Using I=0.92 A and re-arranging the previous equation, we find

Now we know that each electron carries a charge of

, so if we divide the charge Q flowing in the wire by the charge of one electron, we find the number of electron flowing in one second: