Answer: work is the pressure acting through the change in volume
Explanation:
In the same way that work is defined as force operating over a distance, work is the pressure acting through the change in volume. Pressure is comparable to force in pressure–volume work, while volume is analogous to distance in the classic definition of work.
Answer: The elevator must be accelerating.
Explanation:
As the tension force is opposing to the the force of gravity on the load which is hung vertically, and the tension force can adopt any value in order to comply with Newton's 2nd law, if the tension force is less than the force due to gravity, this means that all system is not in equilibrium, so it must be accelerating.
If we assume that the downward is the positive direction, we can write:
mg - T = ma
If T = 0.9 mg, ⇒ mg (1-0.9) =0.1 mg = m a ⇒a = 0.1 g , in downward direction.
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
Answer:
a) v₃ = 19.54 km, b) 70.2º north-west
Explanation:
This is a vector exercise, the best way to solve it is finding the components of each vector and doing the addition
vector 1 moves 26 km northeast
let's use trigonometry to find its components
cos 45 = x₁ / V₁
sin 45 = y₁ / V₁
x₁ = v₁ cos 45
y₁ = v₁ sin 45
x₁ = 26 cos 45
y₁ = 26 sin 45
x₁ = 18.38 km
y₁ = 18.38 km
Vector 2 moves 45 km north
y₂ = 45 km
Unknown 3 vector
x3 =?
y3 =?
Vector Resulting 70 km north of the starting point
R_y = 70 km
we make the sum on each axis
X axis
Rₓ = x₁ + x₃
x₃ = Rₓ -x₁
x₃ = 0 - 18.38
x₃ = -18.38 km
Y Axis
R_y = y₁ + y₂ + y₃
y₃ = R_y - y₁ -y₂
y₃ = 70 -18.38 - 45
y₃ = 6.62 km
the vector of the third leg of the journey is
v₃ = (-18.38 i ^ +6.62 j^ ) km
let's use the Pythagorean theorem to find the length
v₃ = √ (18.38² + 6.62²)
v₃ = 19.54 km
to find the angle let's use trigonometry
tan θ = y₃ / x₃
θ = tan⁻¹ (y₃ / x₃)
θ = tan⁻¹ (6.62 / (- 18.38))
θ = -19.8º
with respect to the x axis, if we measure this angle from the positive side of the x axis it is
θ’= 180 -19.8
θ’= 160.19º
I mean the address is
θ’’ = 90-19.8
θ = 70.2º
70.2º north-west