In order:
Theory
Fact
Hypothesis
Since it was stated that it must move at constant
velocity, so the only force it must overpower is the frictional force.
So the equation is:
F cos θ = Ff
F cos 36 = 65 N
F = 80.34 N
<span>So the nurse must exert 80.34 N of force</span>
<span>two objects in contact with each other are the same temperature</span>
Answer:
The coefficient of kinetic friction between the puck and the ice is 0.11
Explanation:
Given;
initial speed, u = 9.3 m/s
sliding distance, S = 42 m
From equation of motion we determine the acceleration;
v² = u² + 2as
0 = (9.3)² + (2x42)a
- 84a = 86.49
a = -86.49/84
|a| = 1.0296
= ma
where;
Fk is the frictional force
μk is the coefficient of kinetic friction
N is the normal reaction = mg
μkmg = ma
μkg = a
μk = a/g
where;
g is the gravitational constant = 9.8 m/s²
μk = a/g
μk = 1.0296/9.8
μk = 0.11
Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11
Answer:
1.97×10⁻²¹ J
Explanation:
Use ideal gas law to find temperature.
PV = nRT
(9 atm) (9 L) = (83.3 mol) (0.0821 L·atm/mol/K) T
T = 11.9 K
The average kinetic energy per atom is:
KE = 3/2 kT
KE = 3/2 (1.38×10⁻²³ J/K) (11.9 K)
KE = 2.46×10⁻²² J
For a mass of 5.34×10⁻²⁶ kg, the kinetic energy is:
KE = (5.34×10⁻²⁶ kg) (1 mol / 0.004 kg) (6.02×10²³ atom/mol) (2.46×10⁻²² J)
KE = 1.97×10⁻²¹ J