The answer should be D) Cold air because even though its true sound can travel through all types of matter, air which is a gas, can travel but it travels SLOWLY while sound travels quickly in SOLIDS.
I think it’s B I could be wrong but I tried lol
ENGLISH:
It distinguishes between the fermions, which are particles of matter, and the bosons, which carry forces. The matter particles include six quarks and six leptons. The six quarks are called the up, down, charm, strange, top and bottom quark. ... All of these matter particles fall into three “generations.”
SPANISH:
Distingue entre los fermiones, que son partículas de materia, y los bosones, que transportan fuerzas. Las partículas de materia incluyen seis quarks y seis leptones. Los seis quarks se denominan quark arriba, abajo, encanto, extraño, superior e inferior. ... Todas estas partículas de materia se dividen en tres "generaciones".
Hello!
For the explanation of this energy conservation exercise, where we'll use <u>energy conservation law</u>, let's see what this principle proposes.
How you should know, mechanical energy conserves in every point, that is to say mechanical energy is same in A point like B point. (Mechanical energy will be represented by "Me")
Once time we know that, let's take the 220 Joules momentum like A point, and when 55 Joules momentum like B point.
Then, let's use the <u>energy conservation principle:</u>
Me(A) = Me(B)
- We know Mechanical energy in A point, so just lets replace according to our data:
220 J = Me(B)
- In B point, we know kinetic energy, but <u>we dont know gravitational potential energy</u>, so lets descompose Mechanical energy, into kinetic energy and gravitational potential energy:
220 J = Ke + Gpe
- We know kinetic energy value, so lets replace it:
220 J = 55 J + Gpe
- Finally, just clean Gpe and resolve it:
Gpe = 220 J - 55 J = 165 J
Gravitational potential energy is of One hundred sixty five Joules <u>(165 J).</u>
║Sincerely, ChizuruChan║