1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
8

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, a

s shown below. the coefficient of friction between the sled and the snow is 0.100. (a) how much work is done by friction as the sled moves 30.0 m along the hill? (b) how much work is done by the rope on the sled in this distance? (c) what is the work done by the gravitational force on the sled? (d) what is the total work done?

Physics
2 answers:
inessss [21]3 years ago
8 0

A. how much work is done by friction as the sled moves 30.0 m along the hill

We use the formula:

friction work = -µmgdcosΘ 

friction work = -0.100 * 90 kg * 9.8 m/s^2 * 30 m * cos 60

friction work = - 1,323 J

 

B. how much work is done by the rope on the sled in this distance?

We use the formula:

rope work = -mgd(sinΘ - µcosΘ) <span>
</span>rope work = - 90 kg * 9.8 m/s^2 * 30 m (sin 60 – 0.100 * cos 60)

rope work = 21,592 J

 

C. what is the work done by the gravitational force on the sled?

We use the formula:

gravity work = mgdsinΘ 

gravity work = 90 kg * 9.8 m/s^2 * 30 m * sin 60

gravity work = 22,915 J

 

D. what is the total work done?

We add everything:

total work = - 1,323 J + 21,592 J + 22,915 J

<span>total work = 43,184 J</span>

zlopas [31]3 years ago
8 0

Part (a): the work done by friction is \boxed{1324.35\text{ J}}

Part (b): the work done by rope is \boxed{21614.07\text{ J}}.

Part (c): the work done by gravitational force is \boxed{22938.42\text{ J}}.

Part (d): total work done is \boxed{43228.14\text{ J}}.

Further Explanation:

The rope is doing work against the gravity. The friction always acts against the direction of motion. Therefore, the friction is in direction of gravity.

Given:

Mass of victim is 90\text{ kg}.

The inclination of plane is 60^\circ.

The coefficient of plane is 0.1.

The distance travelled on plane is 30\text{ m}.

Concept:

Equations for free body diagram of victim:

Force equation:

Normal force on sled is mgcos\theta.

Friction force:

f=\mu N  

Substitute mgcos\theta for N in above equation.

f=\mu mgcos\theta    

Here, f is the friction force, m is the mass of victim, g is the gravitational acceleration, \mu is the coefficient of friction and \theta is the inclination of plane.

The gravitational force on the sled is mgsin\theta.

Work equation:

(a)

Work done by friction:

W_f=-fd  

Substitute \mu mgcos\theta for f in above equation.

\boxed{W_f=-\mu mdgcos\theta}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g, 0.1 for \mu and 60^\circ for \theta in above equation.

\begin{aligned}W_f&=-0.1\times90\times30\times9.81\times cos\theta\\&=-1324.35\text{ J}\end{aligned}  

Negative sign shows that friction is acting against the motion.

Thus, the work done by friction is \boxed{1324.35\text{ J}}

(b)  

Work done by rope:

\boxed{W_r=mdgsin\theta+W_f}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g, 60^\circ for \theta and -1324.35\text{ J} for W_f in above equation.

\begin{aligned}W_r&=90\times30\times9.81\times sin60^\circ-1324.35\text{ J}\\&=21614.07\text{ J}\end{aligned}  

Thus, the work done by rope is \boxed{21614.07\text{ J}}.

(c)

Work done by gravitational force:

\boxed{W_w=mdgsin\theta}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g and 60^\circ for \theta in above equation.

\begin{aligned}W_w&=90\times30\times9.81\times sin60^\circ\\&=22938.42\text{ J}\end{aligned}  

Thus, the work done by gravitational force is \boxed{22938.42\text{ J}}.

(d)

Total work done:

\boxed{W=W_r+W_w+W_f}  

Substitute 21614.07\text{ J} for W_r, 22938.42\text{ J} for W_w and \boxed{-1324.35\text{ J}} for W_f in above equation.

\begin{aligned}W&=21614.07+22938.42-1324.35\text{ J}\\&=43228.14\text{ J}\end{aligned}

Thus, total work done is \boxed{43228.14\text{ J}}

Learn more:

1. Motion on a rough surface: brainly.com/question/7031524

2. Motion under the gravitational force: brainly.com/question/10934170

3. Principle of conservation of momentum: brainly.com/question/9484203

Answer Details:

Grade: College

Subject: Physics

Chapter: Kinematics

Keywords:

Ski patrol, rescue, sled, victim, mass, 90.0 kg, 60.0°, slope, coefficient, friction, snow, 0.100, work, 30.0 m, along, hill, distance and gravitational force

You might be interested in
The new deal helped fix the economy but was not the perfect solution​
Roman55 [17]

you will find your answer through this link

https://www.britannica.com/event/New-Deal

5 0
3 years ago
What is your initial speed if you accelerate at 5.8 m/s/s for 3.0 seconds and achieve a final speed of 45 m/s?
Natali5045456 [20]

Answer:

27.6 m/s

Explanation:

hopefully it makes sense and is visible

:)

8 0
2 years ago
3. Suppose that you have an electrically charged stick. If you divide the stick in half, each half will have half the original c
FrozenT [24]

Answer:

No, you can't keep on dividing the charge forever.

Explanation:

No, you can't keep on dividing the charge in that manner forever because the total charge of the stick is an integer multiples of individual units known as an elementary charge, <em>which is the electron (e) charge (e = 1.602x10⁻¹⁹C)</em>.

Therefore the limit of the division of the original charge will be the electron charge since it is the smallest charge that can exist freely.  

I hope it helps you!  

8 0
3 years ago
3. Identify three elements and three compounds. How are they<br> similar? How are they different?
Basile [38]

Answer:  A compound is a substance formed when two or more elements are chemically joined. Water, salt, and sugar are examples of compounds. When the elements are joined, the atoms lose their individual properties and have different properties from the elements they are composed of.

6 0
3 years ago
Show your working please ​
saw5 [17]

Explanation:

There's not enough information in the problem to solve it.  We need to know either the initial speed of the lorry, or the time it takes to stop.

For example, if we assume the initial speed of the lorry is 25 m/s, then we can find the rate of deceleration:

v² = v₀² + 2aΔx

(0 m/s)² = (25 m/s)² + 2a (50 m)

a = -6.25 m/s²

We can then use Newton's second law to find the force:

F = ma

F = (7520 kg) (-6.25 m/s²)

F = -47000 N

3 0
3 years ago
Other questions:
  • Find the x-components of this vector: 92.5 m, 32.0 degrees. Remember, angles are measured from the +x axis.
    7·1 answer
  • Find the ratio of average speed of a scooter moving at 30m/min and a car moving at 27km/hr
    6·1 answer
  • A 2.44 kg block is pushed 1.55 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle o
    8·1 answer
  • Bill is throwing a football at four targets and attempting to knock them over. Which of the following targets will be hardest fo
    6·1 answer
  • Positively charged particle A.proton B.neutron C.electron
    13·2 answers
  • Which is the union of one man and one woman called?
    5·2 answers
  • What is the name of the force that slows it down?.
    8·1 answer
  • According to quantum mechanics the motions of subatomic particles may be described as
    14·1 answer
  • How to delete question​
    14·2 answers
  • A 0.75 kg rock is projected from the edge of the top of a building with an initial velocity of 11.9 m/s at an angle 59◦ above th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!