1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
8

Suppose the ski patrol lowers a rescue sled and victim, having a total mass of 90.0 kg, down a 60.0° slope at constant speed, a

s shown below. the coefficient of friction between the sled and the snow is 0.100. (a) how much work is done by friction as the sled moves 30.0 m along the hill? (b) how much work is done by the rope on the sled in this distance? (c) what is the work done by the gravitational force on the sled? (d) what is the total work done?

Physics
2 answers:
inessss [21]3 years ago
8 0

A. how much work is done by friction as the sled moves 30.0 m along the hill

We use the formula:

friction work = -µmgdcosΘ 

friction work = -0.100 * 90 kg * 9.8 m/s^2 * 30 m * cos 60

friction work = - 1,323 J

 

B. how much work is done by the rope on the sled in this distance?

We use the formula:

rope work = -mgd(sinΘ - µcosΘ) <span>
</span>rope work = - 90 kg * 9.8 m/s^2 * 30 m (sin 60 – 0.100 * cos 60)

rope work = 21,592 J

 

C. what is the work done by the gravitational force on the sled?

We use the formula:

gravity work = mgdsinΘ 

gravity work = 90 kg * 9.8 m/s^2 * 30 m * sin 60

gravity work = 22,915 J

 

D. what is the total work done?

We add everything:

total work = - 1,323 J + 21,592 J + 22,915 J

<span>total work = 43,184 J</span>

zlopas [31]3 years ago
8 0

Part (a): the work done by friction is \boxed{1324.35\text{ J}}

Part (b): the work done by rope is \boxed{21614.07\text{ J}}.

Part (c): the work done by gravitational force is \boxed{22938.42\text{ J}}.

Part (d): total work done is \boxed{43228.14\text{ J}}.

Further Explanation:

The rope is doing work against the gravity. The friction always acts against the direction of motion. Therefore, the friction is in direction of gravity.

Given:

Mass of victim is 90\text{ kg}.

The inclination of plane is 60^\circ.

The coefficient of plane is 0.1.

The distance travelled on plane is 30\text{ m}.

Concept:

Equations for free body diagram of victim:

Force equation:

Normal force on sled is mgcos\theta.

Friction force:

f=\mu N  

Substitute mgcos\theta for N in above equation.

f=\mu mgcos\theta    

Here, f is the friction force, m is the mass of victim, g is the gravitational acceleration, \mu is the coefficient of friction and \theta is the inclination of plane.

The gravitational force on the sled is mgsin\theta.

Work equation:

(a)

Work done by friction:

W_f=-fd  

Substitute \mu mgcos\theta for f in above equation.

\boxed{W_f=-\mu mdgcos\theta}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g, 0.1 for \mu and 60^\circ for \theta in above equation.

\begin{aligned}W_f&=-0.1\times90\times30\times9.81\times cos\theta\\&=-1324.35\text{ J}\end{aligned}  

Negative sign shows that friction is acting against the motion.

Thus, the work done by friction is \boxed{1324.35\text{ J}}

(b)  

Work done by rope:

\boxed{W_r=mdgsin\theta+W_f}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g, 60^\circ for \theta and -1324.35\text{ J} for W_f in above equation.

\begin{aligned}W_r&=90\times30\times9.81\times sin60^\circ-1324.35\text{ J}\\&=21614.07\text{ J}\end{aligned}  

Thus, the work done by rope is \boxed{21614.07\text{ J}}.

(c)

Work done by gravitational force:

\boxed{W_w=mdgsin\theta}  

Substitute 90\text{ kg} for m, 30\text{ m} for d, 9.81\text{ m}/\text{s}^2 for g and 60^\circ for \theta in above equation.

\begin{aligned}W_w&=90\times30\times9.81\times sin60^\circ\\&=22938.42\text{ J}\end{aligned}  

Thus, the work done by gravitational force is \boxed{22938.42\text{ J}}.

(d)

Total work done:

\boxed{W=W_r+W_w+W_f}  

Substitute 21614.07\text{ J} for W_r, 22938.42\text{ J} for W_w and \boxed{-1324.35\text{ J}} for W_f in above equation.

\begin{aligned}W&=21614.07+22938.42-1324.35\text{ J}\\&=43228.14\text{ J}\end{aligned}

Thus, total work done is \boxed{43228.14\text{ J}}

Learn more:

1. Motion on a rough surface: brainly.com/question/7031524

2. Motion under the gravitational force: brainly.com/question/10934170

3. Principle of conservation of momentum: brainly.com/question/9484203

Answer Details:

Grade: College

Subject: Physics

Chapter: Kinematics

Keywords:

Ski patrol, rescue, sled, victim, mass, 90.0 kg, 60.0°, slope, coefficient, friction, snow, 0.100, work, 30.0 m, along, hill, distance and gravitational force

You might be interested in
If Scoobie could drive a Jetson's flying car at a constant speed of 450.0 km/hr across oceans and space, approximately how long
vladimir2022 [97]

Answer:

The value is t = 3.6 \  days

Explanation:

From the question we are told that

The speed is v  =  450.0 km/h

The radius of the earth is R =  6200 \  km

Generally the circumfernce of the earth is mathematically evaluated as

C =  2\pi  R

=> C =   2 * 3.142 *   6200

=> C =  38960.8 \ km

Generally the time taken is mathematically represented as

t =  \frac{38960.8}{450.0}

         t = 86.6 \  hr

Converting to days

         t = \frac{86.6}{24}

=>       t = 3.6 \  days

7 0
2 years ago
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
tatiyna

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

4 0
2 years ago
How does the law of conservation of energy apply to machines?
trasher [3.6K]
The answer is letter C
7 0
3 years ago
Read 2 more answers
Its not b...................
vladimir1956 [14]

sir what's the question you have all you wrote is it's not b

4 0
3 years ago
Discuss the relationship between amperage, voltage, and power.
Stells [14]

Electrical power, in watts  =  (voltage, in volts) x (current, in Amperes)
5 0
3 years ago
Other questions:
  • For all simple machines, when the output force is greater than the input force,
    11·1 answer
  • NEEDD SOME HELP ASAP HELP MEHHH<br> 50 pOINTS
    7·2 answers
  • Convert -90.0°F to -5.0°c to kelvin
    9·1 answer
  • Explain why liquids flow but solids do not.
    10·2 answers
  • Two objects made of the same material are heated to 60 oC and 90 oC. According to
    10·2 answers
  • What would happen to the wavelength if the frequency was doubled?
    7·1 answer
  • In the center of the Milky Way galaxy is a<br> A
    11·2 answers
  • Match the words in the left-hand column to the appropriate blank in the sentences in the right-hand column. Use each word only o
    6·1 answer
  • Liquid pools of methane are found on the surface of Titan, one of Saturn's moons. The temperature on the surface of Titan is -18
    6·1 answer
  • A current of 0.050 amps flows in a circuit element with a resistance of 25 ohms what is the voltage drop across the circuit elem
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!