Answer:
Responsibility
Explanation:
By stamping the drawings that he was looking over, Jack Gillum conveys the fact that he is accepting responsibility for this work. The purpose of Gillum's stamp is to explain that such work has been under engineering review, and that it has fulfilled all the requirements that he watches our for. By putting his stamp in this work, Gillum accepts responsibility in case an error or a discrepancy is found in the drawings.
Answer:
(a) BP = 11.99 KPa
(b) h = 2 m
Explanation:
(a)
Since, the fluid pressure and blood pressure balance each other. Therefore:
BP = ρgh
where,
BP = Blood Pressure
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = 1.2 m
Therefore,
BP = (1020 kg/m³)(9.8 m/s²)(1.2 m)
<u>BP = 11995.2 Pa = 11.99 KPa</u>
(b)
Again using the equation:
P = ρgh
with data:
P = Gauge Pressure = 20 KPa = 20000 Pa
ρ = density of fluid = 1020 kg/m³
g = acceleration due to gravity = 9.8 m/s²
h = height of fluid = ?
Therefore,
20000 Pa = (1020 kg/m³)(9.8 m/s²)h
<u>h = 2 m</u>
Central Park’s significance was its influence throughout nationwide park architecture. It’s also an iconic landmark of New York and attracts millions of people each year
Answer:
Given that

LHS of above given equation have dimension
.
Now find the dimension of RHS
Dimension of P =
.
Dimension of d=
.
Dimension of μ =
.
Dimension of L=
.
So
![\dfrac{\Delta Pd^2}{32\mu L}=\dfrac{[ML^{-1}T^{-2}].[M^{0}L^{1}T^{0}]^2}{[ML^{-1}T^{-1}].[M^{0}L^{1}T^{0}]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5CDelta%20Pd%5E2%7D%7B32%5Cmu%20L%7D%3D%5Cdfrac%7B%5BML%5E%7B-1%7DT%5E%7B-2%7D%5D.%5BM%5E%7B0%7DL%5E%7B1%7DT%5E%7B0%7D%5D%5E2%7D%7B%5BML%5E%7B-1%7DT%5E%7B-1%7D%5D.%5BM%5E%7B0%7DL%5E%7B1%7DT%5E%7B0%7D%5D%7D)
![\dfrac{\Delta Pd^2}{32\mu L}=[M^0L^{1}T^{-1}]](https://tex.z-dn.net/?f=%5Cdfrac%7B%5CDelta%20Pd%5E2%7D%7B32%5Cmu%20L%7D%3D%5BM%5E0L%5E%7B1%7DT%5E%7B-1%7D%5D)
It means that both sides have same dimensions.