B
Bensbsbng f fudge dndjdjd d djdjdbd
Answer:
Work, W = F * d, and
Work = change in kinetic energy, so W=deltaKE.
Hence,
deltaKE=F * d
(1/2)*m*v^2 =F * d
d=[(1/2)*m*v^2]/F
d=[(1/2)*0.6*20^2]/5
d=24 m.
Explanation:
Work = change in kinetic energy, so W=deltaKE.
Answer:
Food, clothes, language, and belief
Answer:

Explanation:
To calculate the force we need to use this equation

where L is the total length of the wire
So in this case the small element of current is

Because x is the direction of the current flow.
As is said in the problem B is such that
![\vec{B} = B \hat{j} = 0.62\hat{j} [ T]](https://tex.z-dn.net/?f=%20%5Cvec%7BB%7D%20%3D%20B%20%5Chat%7Bj%7D%20%3D%200.62%5Chat%7Bj%7D%20%5B%20T%5D)
so to use the equation above we first calculate the following cross product:

so the force:
So here we use the fact that B=0 in any point of the x axis that is not
, that means that we only need to do the integration between a very short distant behind the point
and a very short distant after that point, meaning:

so is the same as evaluating
at 
that is:




Answer:
(a) 
(b) 
Given:
Time period of Pulsar, 
Equatorial radius, R = 15 Km = 15000 m
Spinning time, 
Solution:
(a) To calculate the value of the centripetal acceleration,
on the surface of the equator, the force acting is given by the centripetal force:

(1)
where

(2)
Now, from (1) and (2):



(b) To calculate the tangential acceleration of the object :
The tangential acceleration of the object will remain constant and is given by the equation of motion as:

where
u = 


