ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ
Answer: smaller
Ultraviolet radiation has broad range of wavelengths, higher
number means greater risk of exposure to UV rays that can be dangerous to skin
cells. Sunlight is the main source of electromagnetic radiation and it is
transmitted in different wavelengths known as electromagnetic spectrum. This spectrum
is divided into several regions in order of decreasing wavelength and increasing
energy and frequency. UV radiation has frequency and energy that is higher than purple
light or violet radiation and the wavelength of ultraviolet radiation
is smaller than violet radiation.
<span> </span>
The larger mass object would have more kinetic energy. 1) its heavier 2) it covers a larger area 3) the more mass an object has, the larger the kinetic energy because of its weight.
Answer:
4.245s
Explanation:
Given that,
Hypothetical value of speed of light in a vacuum is 18 m/s
Speed of the car, 14 m/s
Time given is 6.76 s, and we're asked to find the observed time, T
The relationship between the two times can be given as
T = t / √[1 - (v²/c²)]
The missing variable were looking for is t, and we can find it if we rearrange the formula and make t the subject
t = T / √[1 - (v²/c²)]
And now, we substitute the values and insert into the equation
t = 6.76 * √[1 - (14²/18²)]
t = 6.76 * √[1 - (196/324)]
t = 6.76 * √(1 - 0.605)
t = 6.76 * √0.395
t = 6.76 * 0.628
t = 4.245 s
Therefore, the time the driver measures for the trip is 4.245s
First, calculate how long the ball is in midair. This will depend only on the vertical displacement; once the ball hits the ground, projectile motion is over. Since the ball is thrown horizontally, it originally has no vertical speed.
t = time vi = initial vertical speed = 0m/s g = gravity = -9.8m/s^2 y = vertical displacement = -45m
y = .5gt^2 [Basically, in this equation we see how long it takes the ball to fall 45m] -45m = .5 (-9.8m/s^2) * t^2 t = 3.03 s
Now we know that the ball is midair for 3.03s. Since horizontal speed is constant we can simply use:
x = horizontal displacement v = horizontal speed = 25m/s t = time = 3.03s
x = v*t x = 25m/s * 3.03s = 75.76 m Thus, the ball goes about 75 or 76 m from the base of the cliff.