Answer:
Although the vast majority of DNA in most eukaryotes is found in the nucleus, some DNA is present within the mitochondria of animals, plants, and fungi and within the chloroplasts of plants.
Explanation:
Answer:
m/s²
m/s²


Explanation:
Normal or centripetal acceleration measures change in speed direction over time. Its expression is given by:
Formula 1
Where:
: Is the normal or centripetal acceleration of the body ( m/s²)
v: It is the magnitude of the tangential velocity of the body at the given point
.(m/s)
r: It is the radius of curvature. (m)
Newton's second law:
∑F = m*a Formula ( 2)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
Data




r= 120 m
Problem development
We replace data in formula (1) to calculate centripetal acceleration:

m/s²

m/s²
We replace data in formula (2) to calculate centripetal force Fc) :




In a certain region of space, a uniform electric field is in the x direction. A particle with negative charge is carried from x=20.0 cm to x=60.0cm.
<h3>Where is the
electric potential, when the particle moved?</h3>
The charge field system's electric potential energy rose. The particle experiences an electric force that is directed against the x-axis. It is pushed uphill by an outside force, which raises the potential energy.
When a charge to be moved against an applied electric field, electric potential energy is needed. A charge must be moved through a stronger electric field with more energy than it would require to carry it via a weaker electric field.
In a certain region of space, a uniform electric field is in the x direction. A particle with negative charge is carried from x=20.0 cm to x=60.0cm.
The electric potential energy of the charge field system:
- (a) increase
- (b) remain constant
- (c) decrease
- (d) change unpredictably
The correct option is a).
To learn more about electric potential, refer to:
brainly.com/question/21808222
#SPJ4
Answer:
<em>The new force is 2/3 of the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrical force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between the two objects.
Written as a formula:

Where:

q1, q2 = the objects' charge
d= The distance between the objects
Suppose the first charge is doubled (2q1) and the second charge is one-third of the original charge (q2/3). Now the force is:

Factoring out 2/3:

Substituting the original force:

The new force is 2/3 of the original force
1. The problem statement, all variables and given/known data A person jumps from the roof of a house 3.4 meters high. When he strikes the ground below, he bends his knees so that his torso decelerates over an approximate distance of 0.70 meters. If the mass of his torso (excluding legs) is 41 kg. A. Find his velocity just before his feet strike the ground. B. Find the average force exerted on his torso by his legs during deceleration. 2. Relevant equations I can't even seem to figure that part out. Help please? 3. The attempt at a solution I don't know how to start this at all