Answer is (b)
2,3,1 is the stoichiometry
The values in front of the elements are the stoichiometric values
(Since Al2Br6 has no value in front, it's considered 1)
<u>Answer:</u> The moles of oxygen and carbon dioxide in air is
and
respectively
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of atmosphere = 
Average molar mass of atmosphere = 28.96 g/mol
Putting values in above equation, we get:

We know that:
Percent of oxygen in air = 21 %
Percent of carbon dioxide in air = 0.0415 %
Moles of oxygen in air = 
Moles of carbon dioxide in air = 
Hence, the moles of oxygen and carbon dioxide in air is
and
respectively
4 weeks for the moon to go to the next full moon
Mayonnaise is a heterogeneous mix. The correct answer is colloids.