Answer:
We have 1.361 moles in the sample
Explanation:
Mass of iron = 76.02g
Molar mass of iron = 55.845 g/ mole ( This we can find in the periodic table, and menas that 1 mole of iron has a mass of 55.845 g).
To calculate the number of moles we will use following formula:
moles (n) = mass / molar mass
moles iron = 76.02g / 55.845 g/ mole
moles iron = 1.36127 moles
To use the correct number of significant digits we use the following rule for multiplication and division :
⇒ the number with the least number of significant figures decides the number of significant digits.
⇒76.02 has 4 digits ( 2 after the comma) and 55.845 has 5 digits (3 after the comma).
⇒ this means 1.361 moles
We have 1.361 moles in the sample
Answer:
1255.4L
Explanation:
Given parameters:
P₁ = 928kpa
T₁ = 129°C
V₁ = 569L
P₂ = 319kpa
T₂ = 32°C
Unknown:
V₂ = ?
Solution:
The combined gas law application to this problem can help us solve it. It is mathematically expressed as;

P, V and T are pressure, volume and temperature
where 1 and 2 are initial and final states.
Now,
take the units to the appropriate ones;
kpa to atm, °C to K
P₂ = 319kpa in atm gives 3.15atm
P₁ = 928kpa gives 9.16atm
T₂ = 32°C gives 273 + 32 = 305K
T₁ = 129°C gives 129 + 273 = 402K
Input the values in the equation and solve for V₂;

V₂ = 1255.4L
Answer:
Reduce number of trips
Avoid burning leaves
Avoid using garden equipments
Reduce the use of wood stove
Avoid gas-powered lawn.
Explanation:
In science it is best to continue research, and rinse and repeat. This allows for a stronger hypothesis if you're results are the same every time, or change your hypothesis if you stumble upon new results. <span />
A. is the answer
if u have any doubts ask me
please mark as brainliest