General 'rule' - "like dissolves like". The solubility
of a solute in a solvent (that is, the extent of the mixing of the
solute and solvent species) depends on a balance between the natural
tendency for the solute and solvent species to mix and the tendency for a
system to have the lowest energy possible.
Hope this helps :p
Answer:
Option C. 1
Explanation:
Step 1:
Determination of the Neutron of both isotopes. This is illustrated below.
For isotope y xA:
Mass number = y
Atomic number = x
Neutron =..?
Atomic number = proton number = x
Mass number = Proton + Neutron
y = x + Neutron
Rearrange
Neutron = y – x
For isotope (y + 1) xA:
Mass number = y + 1
Atomic number = x
Neutron =.?
Atomic number = proton number = x
Mass number = Proton + Neutron
y + 1 = x + Neutron
Rearrange
Neutron = y + 1 – x
Step 2:
Determination of the difference between the neutron number of both isotopes. This is illustrated below:
For isotope y xA:
Neutron number = y – x
For isotope (y + 1) xA:
Neutron number = y + 1 – x
Difference in neutron number
=> (y + 1 – x) – (y – x)
=> y + 1 – x – y + x
Rearrange
=> y – y + 1 – x + x
=> 1
Therefore, the difference in the neutron number of both isotopes is 1
The chemical reaction is written as:
2Zn + O2 = 2ZnO
We are given the amount of the product to be produced from the reaction. We use this value and the relation of the substances in the reaction to calculate what is asked. We do as follows:
2.10 g ZnO ( 1 mol / 81.408 g ) ( 1 mol O2 / 2 mol ZnO ) ( 32 g / 1 mol ) = 0.414 g O2 is needed
Answer:
You will be able to watch the slow dissolution of the nail (probably a steel nail and not iron) and the change in colour of the solution.
Explanation:
I believe not 100% sure.
Answer:
B) Electrons are located in the cloud-like areas around the nucleus.
Explanation:
The quantum mechanical model of the atom does not consider the path through which an electron travels. It rather estimates the probability of where electrons can be found at each energy level.
The region of maximum probability of where an electron is located is sometimes called an electron cloud or orbital. Each orbital of an atom and the electrons accomodated are described completely by a set of four quantum numbers.