The nickel, itself ferromagnetic, reduces the magnetism in stainless steel but not to zero. Austenitic stainless steel is defined as the steel crystal structure that is face centered cubic which is the same structure hot iron has as one of the allotropes of iron. Nickel above a certain percentage (18) stabilizes austenite structure just as if you took carbon steel and heated it above 730–770 C. Above this temperature the structure is FCC and above the Currie temperature where magnetism is killed due to the isotopic symmetry of the structure. However, you can still get a small magnetic attraction from austenitic stainless steel if it is cold worked, heat treated a certain way or welded. So it is not a guarantee that austenitic stainless is totally non magnetic.
The dependent variable is plant height.
The <em>dependent variable</em> (plant height) is the <em>property that changes</em> as a result something the scientist does.
The <em>independent variable</em> is the <em>property that the scientist changes</em> systematically (the amount of CO_2) to see its effect.
The <em>number of plants</em> and the <em>types of plants</em> are <em>uncontrolled variables</em>. They may or may not affect the heights of the plants.
Answer:
Earthquake
Explanation:
Notice how it is starting to shift allowing the earthquake to form.
A) eventually they will be in thermal equilibrium