Answer:
The spring constant of this spring is 200 N/m.
Explanation:
Given:
Original unstretched length of the spring (x₀) = 10 cm =0.10 m [1 cm =0.01 m]
Stretched length of the spring (x₁) = 18 cm = 0.18 cm
Force acting on the spring (F) = 16 N
Spring constant of the spring (k) = ?
First let us find the change in length of the spring or the elongation caused in the spring due to the applied force.
So, Change in length = Final length - Initial length

Now, restoring force acting on the spring is directly related to its elongation or compression as:

Rewriting in terms of 'k', we get:

Now, plug in the given values and solve for 'k'. This gives,

Therefore, the spring constant of this spring is 200 N/m.
Answer:
(a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
Explanation:
Given that,
Radius = 1.50 m
Mass = 475 kg
Power 
Rotational speed = 4000 rev/min
We need to calculate the moment of inertia
Using formula of moment of inertia

Put the value into the formula


(a). We need to calculate the kinetic energy stored in the fly wheel
Using formula of K.E

Put the value into the formula




(b). We need to calculate the length of time the car could run before the flywheel would have to be brought backup to speed
Using formula of time



Hence, (a). The kinetic energy stored in the fly wheel is 46.88 MJ.
(b). The time is 1.163 hours.
Answer:
49.07 miles
Explanation:
Angle between two ships = 110° = θ
First ship speed = 22 mph
Second ship speed = 34 mph
Distance covered by first ship after 1.2 hours = 22×1.2 = 26.4 miles = b
Distance covered by second ship after 1.2 hours = 34×1.2 = 40.8 miles = c
Here the angle between the two sides of a triangle is 110° so from the law of cosines we get
a² = b²+c²-2bc cosθ
⇒a² = 26.4²+40.8²-2×26.4×40.8 cos110
⇒a² = 2408.4
⇒a = 49.07 miles
There is no acceleration of g in the x direction because the gravitational acceleration points downward. Also, on most studies we ignore the tidal forces since we are dealing with small bodies compared to the size of the earth.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer: C Plane
Explanation: According to Newton's law, gravitational force is proportional to the product of masses and inversely proportional to the square of distance between them.
Gravitational force depends on mass. The bigger the mass, the more the magnitude of the gravitational force. Since plane is assume to have the highest mass in the options, we can therefore conclude that plane will experience the highest gravitational force.