A)
R1 = 30/(7*60)
We are multiplying 7 with 60 because there are 60 seconds in 1 minute.
R1 = 30/420 = 0.0714 gallons/second
b) For this we need to express gallons to cubic meters.
1 gallon = 0.003785 m^3
R2 = 0.0714*0.003785 = 0.00027 m^3/s
c) V = R2*t where V is volume of some tank.
which means that
t=V/R2
t = 3698.8s or
t = 1.0274 hours
Initial Velocity is the velocity at time interval t = 0 and it is represented by u. It is the velocity at which the motion starts. They are four initial velocity formulas: (1) If time, acceleration and final velocity are provided, the initial velocity is articulated as. u = v – at.
This can be seen as a trick question because heat engines can typically never be 100 percent efficient. This is due to the presence of inefficiencies such as friction and heat loss to the environment. Even the best heat engines can only go up to around 50% efficiency.
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
Answer:
1450.4 KN
Explanation:
Pressure = ρhg
where: ρ is the density of the liquid, h is the height and g the force of gravity.
Total pressure exerted by the liquids at the base = Pressure of oil + Pressure of water + Pressure of mercury
So that,
i. Pressure of oil = ρhg
(ρ = 0.8 g/cm³ = 800 kg/m³)
= 800 x 5 x 9.8
= 39200
Pressure of oil = 39200 N
ii. Pressure of water = ρhg
(ρ = 1 g/cm³ = 1000 kg/m³)
= 1000 x 8 x 9.8
= 78400
Pressure of water = 78400 N
ii. Pressure of mercury = ρhg
(ρ = 13.6 g/cm³ = 13600 kg/m³)
= 13600 x 10 x 9.8
= 1332800
Pressure of mercury = 1332800 N
So that,
Total pressure exerted by the liquids at the base = 39200 + 78400 + 1332800
= 1450400
= 1450.4 KN
Total pressure exerted by the liquids at the base is 1450.4 KN
.