It is given that the surface area of sphere is 4 π r² and its volume is (4/3 π r³)
With a diameter of 1.2 mm you have a radius of 0.6 mm so the surface area about 4.5 mm² and the volume is about 0.9 mm³
The total surface energy of the original droplet is (4.5 x 10⁻⁶ m x 72) = 3.24 x 10⁻⁴mJ
The five smaller droplets need to have the same volume as the original so:
5 V = 0.9 mm³ so the volume of smaller sphere will equal 0.18 mm³
Since this smaller volume still have volume (4/3 π r³) so r = 0.35 mm
Each of the smaller droplets has a surface are = 1.54 mm²
The surface energy of the 5 smaller droplet is then (5 x 1.54 x 10⁻⁶ m x 72) = 5.54 x 10⁻⁴ mJ
From this radius the surface energy of all smaller droplets is 5.54 x 10⁻⁴ and the difference in energy is (5.54 x 10⁻⁴) - (3.24 x 10⁻⁴) = 2.3 x 10⁻⁴ mJ
Therefore we need about 2.3 x 10⁻⁴ mJ of energy to change a spherical droplet of water of diameter 1.2 mm into 5 identical smaller droplets
I don't think it would dissolve , or at least not all of it bcuz that would be a lot of salt for a small amount of water
Answer: Magnesium Mg
Explanation:
Oxidization is the process by which a substance either gains oxygen or losses electrons.
The chemical reaction of the above is denoted by,
Mg(s) + 2HCl(aq) -----> MgCl2(aq) + H2(g)
Mg went from a 0 to a +2 state which would mean that it lost electrons.
It was therefore oxidized.
Please do react or comment if you need clarification or if the answer helped you. This can help other users as well. Thank you.
Remember, 1 mole= 6.022x10^23 atoms, molecules, or formula units.
Answer is 1.42x10^24