Answer:
i. Keq=4157.99.
ii. More hydrogen sulfide will be produced.
Explanation:
Hello,
i. In this case, for the concentrations at equilibrium on the given chemical reaction, the equilibrium constant results:
![Keq=\frac{[H_2S]^2}{[H_2]^2[S_2]} =\frac{(0.97M)^2}{(0.051M)^2(0.087)} =4157.99](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BH_2S%5D%5E2%7D%7B%5BH_2%5D%5E2%5BS_2%5D%7D%20%3D%5Cfrac%7B%280.97M%29%5E2%7D%7B%280.051M%29%5E2%280.087%29%7D%20%3D4157.99)
ii. Now, by means of the Le Chatelier's principle, the addition of a reactant shifts the reaction towards products, it means that more hydrogen sulfide will be produced in order to reach equilibrium.
Best regards.
Explanation:
i found this the question is different but I think the situation is same
Information would you need to know about the H₂O₂ solution is through stoichiometry experiment
The ideal gas constant R can be found experimentally by determining the number of moles of gas that occupies a particular measured volume at a known pressure and temprature and the H₂O₂ is a chemical compound used un various chemical reactions and is slightly viscous than water and the experiment by decomposition of hydrogen peroxide and using the ideal gas law rearrangement equation we can calculate the value of r and we will need the information such as concentration, volume and moles of H₂O₂ to determine its stoichiometry
Know more about ideal gas constant
brainly.com/question/20372603
#SPJ4