Answer:
Product: ethyl L-valinate
Explanation:
If we want to understand what it is the molecule produced we have to an<u>alyze the reagents</u>. We have valine an <u>amino acid</u>, in this kind of compounds we have an <em>amine group</em> (
) and a <em>carboxylic acid</em> group (
). Additionally, we have an <u>alcohol </u>(
) in the presence of HCl (a <u>strong acid</u>) in the first step, and a base (
).
When we have an acid and an alcohol in a vessel we will have an <u>esterification reaction</u>. In other words, an ester is produced. As the <em>first step,</em> the oxygen in the C=O (in the carboxylic acid group) would be protonated. In the <em>second step</em>, the ethanol attacks the carbon in the C=O of the carboxylic acid group producing a new bond between the oxygen in the ethanol and the carbon in the carboxylic acid. In <em>step 3</em>, a proton is transferred to produce a better leaving group (
). In <em>step 4</em>, a water molecule leaves the main structure to produce again the double bond C=O. <em>Finally</em>, a base (
) removes the hydrogen from the C=O bond to produce ethyl L-valinate
See figure 1
I hope it helps!
<u>Answer:</u> The energy released in the given nuclear reaction is 1.3106 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 39.963998 u
Mass of
= 39.962591 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 1.3106 MeV.
I believe the answer is a
Answer:
if the oil is already 60 c and you heat up the hot plate to the same degree you are not changing anything
hope this helps :)
Answer :
The concentration of
before any titrant added to our starting material is 0.200 M.
The pH based on this
ion concentration is 0.698
Explanation :
First we have to calculate the concentration of
before any titrant is added to our starting material.
As we are given:
Concentration of HBr = 0.200 M
As we know that the HBr is a strong acid that dissociates complete to give hydrogen ion
and bromide ion
.
As, 1 M of HBr dissociates to give 1 M of 
So, 0.200 M of HBr dissociates to give 0.200 M of 
Thus, the concentration of
before any titrant added to our starting material is 0.200 M.
Now we have to calculate the pH based on this
ion concentration.
pH : It is defined as the negative logarithm of hydrogen ion concentration.
![pH=-\log [H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%20%5BH%5E%2B%5D)


Thus, the pH based on this
ion concentration is 0.698