Answer: Sodium also floats on the surface, but enough heat is given off to melt the sodium (sodium has a lower melting point than lithium and the reaction produces heat faster) and it melts almost at once to form a small silvery ball that dashes around the surface.
Explanation:
To determine the standard heat of reaction, ΔHrxn°, let's apply the Hess' Law.
ΔHrxn° = ∑(ν×ΔHf° of products) - ∑(ν×ΔHf° of reactants)
where
ν si the stoichiometric coefficient of the substances in the reaction
ΔHf° is the standard heat of formation
The ΔHf° for the substances are the following:
CH₃OH(l) = -238.4 kJ/mol
CH₄(g) = -74.7 kJ/mol
O₂(g) = 0 kJ/mol
ΔHrxn° = (1 mol×-74.7 kJ/mol) - ∑(1 mol×-238.4 kJ/mol)
ΔHrxn° = +163.7 kJ
Answer: Salt and Water
Explanation:
An Arrhenius acid (HCl) can best be defined as any substance that when added to water increases the concentration of H+ ions.
While an Arrhenius base (KOH) is any substance that when added to water increases the concentration of OH- ions.
When an Arrhenius acid such as HCl reacts with an Arrhenius base such as KOH, the end products will be salt and water, in a process called Neutralization Reaction.
HCl (aq) + KOH (aq) -------> KCl (aq) + H2O (l)
Answer:
Ferric oxide reacts with aluminium to produce aluminium oxide and iron. The balanced chemical equation for the given reaction is : Fe2O3 + 2Al → Al2O3 + 2Fe.