Answer:
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
Explanation:
<u>Step 1</u>: Data given
Mass of the metal = 21 grams
Volume of water = 100 mL
⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams
Initial temperature of metal = 122.5 °C
Initial temperature of water = 17°C
Final temperature of water and the metal = 19 °C
Heat capacity of water = 4.184 J/g°C
<u />
<u>Step 2: </u>Calculate the specific heat capacity
Heat lost by the metal = heat won by water
Qmetal = -Qwater
Q = m*c*ΔT
m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)
21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)
-2173.5 *c(metal) = -836.8
c(metal) = 0.385 J/g°C
The metal has a heat capacity of 0.385 J/g°C
This metal is copper.
The final temperature in Celsius of the metal block is 49°C.
<h3>How to find the number of moles ?</h3>
Moles water = 
= 
= 0.0266 moles
Heat lost by water = 0.0266 mol x 44.0 kJ/mol
= 1.17 kJ
= 1170 J [1 kJ = 1000 J]
Heat lost = Heat gained
Heat gained by aluminum = 1170 J
1170 = 55 x 0.903 (T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5°C (49°C at two significant figures)
Thus from the above conclusion we can say that The final temperature in Celsius of the metal block is 49°C.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1
Answer:
The correct answer is Option
B. A homogeneous mixture
Explanation: Mixture is solution which is made of two or more than two substances which are combined only physically not chemically. There are two types of mixture i. e. Homogeneous mixture and heterogeneous mixture. Homogeneous mixture is a mixture in which the substances which are combined are uniform in appearance and heterogeneous mixture is a mixture in which substances are suspended in the solution and easily differentiated.
There are a couple of ways in which you can express the concentration of a solution, and here they are: gram per liter (g/L), molarity (M), parts per million (ppm.), and percents (%).
As you can see, only M appears in your answers, which means that the correct option should be (2) 3.5 M.
Answer:
moles of CO2 can be produced from a reaction of 10.0 moles C2H6
Explanation:
In this reaction -
2 moles of C₂H6 produces four molecules of Carbon dioxide (CO2)
So 1 mole of C₂H6 will produce
moles of Carbon dioxide (CO2)
Thus, 10 moles of C₂H6 will produce
moles of Carbon dioxide (CO2)