Deposits
Explanation:
Glaciers also deposits materials in new places when they melt.
- Glaciers are made up of snow flakes that has compressed through time.
- In temperate and polar regions where they are prevalent, they are powerful agents of denudation.
- They can erode, transport and deposit earth materials in places.
- When a glacier retreats by melting, it deposit some of its materials in new places.
- Most of this sediment are called tillites.
- They are made up of unsorted materials of different size grains.
learn more:
Metamorphic rock brainly.com/question/869769
#learnwithBrainly
Answer:
Activating a glow stick is the example of a chemical change, as snapping one will cause a chemical reaction, causing the glow. All of the other options are physical changes because nothing new is formed. Hope this helps!
The greenhouse effect is a natural process that warms the Earth’s surface. When the Sun’s energy reaches the Earth’s atmosphere, some of it is reflected back to space and the rest is absorbed and re-radiated by greenhouse gases.
Greenhouse gases include water vapour, carbon dioxide, methane, nitrous oxide, ozone and some artificial chemicals such as chlorofluorocarbons (CFCs).
The absorbed energy warms the atmosphere and the surface of the Earth. This process maintains the Earth’s temperature at around 33 degrees Celsius warmer than it would otherwise be, allowing life on Earth to exist.
hope it helps you
follow for more………………………>_<
Option C, Antarctic Treaty System, is the right answer.
The Antarctic Treaty System, control global connections with regard to Antarctica; the only continent of the earth without the native population of human beings. In other words, the ATS is the entire system of adjustments developed for the intention of managing associations among states in the Antarctic. The main goal of the ATS is to guarantee "in the affair of all humankind that Antarctica shall proceed always to be practised completely for peaceful objectives and shall not become the view or gadget of universal disharmony.
Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be
.
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.