Answer:
The correct answer is CaO > LiBr > KI.
Explanation:
Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.
With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.
The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.
<span>Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass. Dalton also stated that all compounds were composed of combinations of these atoms in defined ratios. He postulated that chemical reactions resulted in the rearrangement of the reacting atom.
</span>
They are not always identical because they have different isotope numbers which develops different neutrons numbers
Different layers makes the most sense due to the fact it can’t be a dry climate because of the vegetation, also there is a lot of plants so minimal plants isn’t an option, and the temperature in a rain forest is usually very humid so cold temperatures can’t be an answer.
I’m going to say Gravity.