<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
The legend is that he discovered gravity when an apple feel on his head. I don’t know what the true story is, but that’s what I’ve heard so maybe A??
Although, I’m pretty sure it could also be C
So... between A and C, however, I don’t want you to get it wrong so I would recommend getting another opinion
Hope this helps!
Answer:
In pair production, after the loss of Kinetic energy, the angular separation between the two photons is 180°.
Explanation:
- Pair production is the process of formation of two electrons, one negative and the other positive (positron), from a pulse of electromagnetic energy traveling through matter.
- It is a process of direct conversion of radiant energy to matter.
- The sum of the Kinetic energies of the formed particles amounts to a value of 4 MeV.
- When the kinetic energy is lost, emission of two photons, each with an energy of approximately 1 MeV in the form of gamma rays takes place ( in opposite direction).
Therefore, the angle of separation between the two photons is 180°.
Learn more about electromagnetic energy here:
<u>brainly.com/question/9221254</u>
#SPJ4
Answer:
The average power of the engine of the sports car is 56.32 kW
Explanation:
Given;
mass of the sports car, m = 1100 kg
initial velocity of the sports car, u = 0 m/s
final velocity of the sports car, v = 32 m/s
time of motion, t = 10 s
The kinetic energy of the car is given by;
K.E = ¹/₂m(v² - u²)
K.E = ¹/₂mv²
K.E = ¹/₂ x 1100 x 32²
K.E = 563200 J
The average power of the engine of the sports car is given by;
Pavg = Energy / time
Pavg = 563200 / 10
Pavg = 56320 W
Pavg = 56.32 kW
Therefore, the average power of the engine of the sports car is 56.32 kW