1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OverLord2011 [107]
3 years ago
14

Two charges are located in the x x – y y plane. If q 1 = − 2.75 nC q1=−2.75 nC and is located at ( x = 0.00 m , y = 0.600 m ) (x

=0.00 m,y=0.600 m) , and the second charge has magnitude of q 2 = 3.40 nC q2=3.40 nC and is located at ( x = 1.30 m , y = 0.400 m ) (x=1.30 m,y=0.400 m) , calculate the x x and y y components, E x Ex and E y Ey , of the electric field, → E E→ , in component form at the origin, ( 0 , 0 ) (0,0) . The Coulomb force constant is 1 / ( 4 π ϵ 0 ) = 8.99 × 10 9 N ⋅ m 2 /C 2 1/(4πϵ0)=8.99×109 N⋅m2/C2 .
Physics
1 answer:
ludmilkaskok [199]3 years ago
3 0

Answer:

\vec{E}=(-15.78\hat{i}+63.81\hat{j})\frac{N}{C}

Explanation:

In this case we have to work with vectors. Firs of all we have to compute the angles between x axis and the r vector (which points the charges):

\theta_1=tan^{-1}(\frac{0.6m}{0m})=90\° \\\\\theta_2=tan^{-1}(\frac{0.4m}{1.3m})=17.10\°

the electric field has two components Ex and Ey. By considering the sign of the charges we obtain that:

\vec{E} = E_x \hat{i}+E_y\hat{j}\\\\\vec{E}=(E_1cos\theta_1-E_2cos\theta_2)\hat{i}+(E_1sin\theta_1-E_2sin\theta_2)\hat{j}\\\\E_1=k\frac{q}{r_1^2}=(8.99*10^{9}\frac{N}{m^2C^2})\frac{2.75*10^{-9}C}{(0.6m)^2}=68.67\frac{N}{C}\\\\E_2=k\frac{q}{r_2^2}=(8.99*10^{9}\frac{N}{m^2C^2})\frac{3.40*10^{-9}C}{((1.3m)^2+(0.4m)^2)}=16.52\frac{N}{C}

Hence, by replacing E1 and E2 we obtain:

\vec{E}=[(68.67N/C)cos(90\°)-(16.52N/C)cos(17.10\°)]\hat{i}+[(68.67N/C)sin(90\°)-(16.52N/C)sin(17.10\°)]\hat{j}\\\\\vec{E}=(-15.78\hat{i}+63.81\hat{j})\frac{N}{C}

hope this helps!!

You might be interested in
A marble rolls 269cm across the floor with a constant speed of in 44.1cm/s.
Marrrta [24]

Answer:

t = 6.09 seconds

Explanation:

Given that,

Speed, v = 44.1 cm/s

Distance, d = 269 cm

We need to find the time interval of the marble. Speed is distance per unit time.

v=\dfrac{d}{t}\\\\\implies t=\dfrac{d}{v}\\\\t=\dfrac{269\ \text{cm}}{44.1\ \text{cm/s}}\\\\t=6.09\ s

Hence, the time interval of the marble is 6.09 seconds.

6 0
3 years ago
Find the velociity of a car which travels 35 m to the right over a period of 40 seconds
GalinKa [24]

Answer:

the velocity of the car is 0.875 m/s

Explanation:

v = d \div t \\ v = 35m \div 40sec = 0.875 \: m \: per \: sec

therefore the V of car is 0.875 m

8 0
3 years ago
Calculate potential energy
IrinaVladis [17]
The potential energy of an object is defined by the equation: PE = mgh, where m = the mass of the object, g = the gravitational acceleration and h = the object's height above the ground.
4 0
3 years ago
A van is traveling with an initial velocity of 12 m/s. The driver takes a time of 45 seconds to speed up to a velocity of 20 m/s
Rufina [12.5K]
  • Initial velocity=u=12m/s
  • Final velocity=v=20m/s
  • Time=t=45s

\\ \rm\hookrightarrow Acceleration=\dfrac{v-u}{t}

\\ \rm\hookrightarrow Acceleration=\dfrac{20-12}{45}

\\ \rm\hookrightarrow Acceleration=\dfrac{8}{45}

\\ \rm\hookrightarrow Acceleration=0.1m/s^2

Now

  • Distance=s

\\ \rm\hookrightarrow v^2-u^2=2as

\\ \rm\hookrightarrow (20)^2-12^2=2(0.1)s

\\ \rm\hookrightarrow 400-144=0.2s

\\ \rm\hookrightarrow 256=0.2s

\\ \rm\hookrightarrow s=\dfrac{256}{0.2}

\\ \rm\hookrightarrow s=1280m

4 0
3 years ago
A block of 250-mm length and 54 × 40-mm cross section is to support a centric compressive load P. The material to be used is a b
musickatia [10]

Answer:

P = 17.28*10⁶ N

Explanation:

Given

L = 250 mm = 0.25 m

a = 0.54 m

b = 0.40 m

E = 95 GPa = 95*10⁹ Pa

σmax = 80 MPa = 80*10⁶ Pa

ΔL = 0.12%*L = 0.0012*0.25 m = 3*10⁻⁴ m

We get A as follows:

A = a*b = (0.54 m)*(0.40 m) = 0.216 m²

then, we apply the formula

ΔL = P*L/(A*E)  ⇒ P = ΔL*A*E/L

⇒  P = (3*10⁻⁴ m)*(0.216 m²)*(95*10⁹ Pa)/(0.25 m)

⇒  P = 24624000  N = 24.624*10⁶ N

Now we can use the equation

σ = P/A

⇒  σ = (24624000  N)/(0.216 m²) = 114000000 Pa = 114 MPa > 80 MPa

So σ > σmax  we use σmax

⇒  P = σmax*A = (80*10⁶ Pa)*(0.216 m²) = 17280000 N = 17.28*10⁶ N

7 0
2 years ago
Other questions:
  • A car from rest moves a distance s(m) in t second, where s=3t³+t²/4 determine(i)the initial acceleration of the car (ii)the acce
    15·1 answer
  • A(n)___ forms where light seems to come from.
    8·2 answers
  • The half-life of the radioactive element beryllium-13 is 5 × 10-10 seconds, and half-life of the radioactive element beryllium-1
    5·1 answer
  • a car has a mass of 200kg. It is on a hill 1000m high. How much gravitational potential energy does the car have?
    11·1 answer
  • I need help with these questions thank u
    15·1 answer
  • A 75N force is applied to a 15kg box. If the box
    12·1 answer
  • A sound wave traveling through dry air has a frequency of 16 Hz, a wavelength of 22 m, and a speed of 350 m/s. When the sound wa
    15·2 answers
  • TAKING TEST NOW NEED ASAP !!
    10·2 answers
  • Which model could represent a neutral atom of boron?
    9·2 answers
  • What landforms are found on the Moon? (Select all that apply.)
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!