Answer:
In SI units, its value is approximately 6.674×10−11 m3⋅kg−1⋅s−2. The modern notation of Newton's law involving G was introduced in the 1890s by C. V. Boys. The first implicit measurement with an accuracy within about 1% is attributed to Henry Cavendish in a 1798 experiment.
Explanation:
please add me in the brainelist.
There are two forces at play:
- The gravitational force acting downward due to the mass of the bucket and the water that it contains.
- The upward force that your hand exerts on the bucket.
If the magnitude of the force your hand exerts on the bucket equals the magnitude of the gravitational force, the bucket is in static equilibrium. That means the bucket is not moving and the forces acting on it balance each other out, making the net force 0.
Having 0 net force means the bucket doesn't undergo any acceleration, or change in motion.
Answer:
No. Water can be used in a hydroelectric dam to generate electricity, but this does not make us use more or less water in our homes.
Explanation:
Answer:
True.
Explanation:
It also affects your lungs by getting lung disease.
Answer:
The resultant velocity is <u>169.71 km/h at angle of 45° measured clockwise with the x-axis</u> or the east-west line.
Explanation:
Considering west direction along negative x-axis and north direction along positive y-axis
Given:
The car travels at a speed of 120 km/h in the west direction.
The car then travels at the same speed in the north direction.
Now, considering the given directions, the velocities are given as:
Velocity in west direction is, 
Velocity in north direction is, 
Now, since
are perpendicular to each other, their resultant magnitude is given as:

Plug in the given values and solve for the magnitude of the resultant.This gives,

Let the angle made by the resultant be 'x' degree with the east-west line or the x-axis.
So, the direction is given as:

Therefore, the resultant velocity is 169.71 km/h at angle of 45° measured clockwise with the x-axis or the east-west line.