We can use the combined gas law equation to find the new pressure of the gas.

where P - pressure
V - volume
T - temperature
parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
P1 - 795 mm Hg x 0.0013 atm/ mm Hg = 1.033 atm
T1 - 23.5 °C + 273 = 296.5 K
T2 - 31.7 °C + 273 = 304.7 K
substituting the values in the equation

P = 0.712 atm
the answer closest to this value is A) 0.723 atm
therefore answer is
<span>A) 0.723 atm</span>
Answer:
The value is 
Explanation:
From the question we are told that
The mass of saxitoxin is 
The volume of water is 
The osmotic pressure is 
The temperature is 
Generally the osmotic pressure is mathematically represented as

Here R is the gas constant with value

and C is the concentration of saxitoxin
So


Generally the number of moles of saxitoxin is mathematically represented as

=> 
=> 
Generally the molar mass of saxitoxin is mathematically represented as

=> 
=> 
Answer:
The specific heat of the sample unknown metal is approximately 0.45 J/g °C.
General Formulas and Concepts:
<u>Thermodynamics</u>
Specific Heat Formula: 
- <em>m</em> is mass (g)
- <em>c</em> is specific heat capacity (J/g °C)
- Δ<em>T</em> is the change in temperature
Explanation:
<u>Step 1: Define</u>
<em>Identify variables.</em>
<em>m</em> = 112 g
Δ<em>T</em> = 20.0 °C
<em>q</em> = 1004 J
<u>Step 2: Solve for </u><u><em>c</em></u>
- Substitute in variables [Specific Heat Formula]:

- Simplify:

- Isolate <em>c</em>:

- Round [Sig Figs]:

∴ specific heat capacity <em>c</em> is equal to around 0.45 J/g °C.
---
Topic: AP Chemistry
Unit: Thermodynamics