Evaporating? But that’s with a boiling liquid
Answer:
Ni(NO3)2 + 2NaOH → Ni(OH)2 + 2NaNO3
NET IONIC EQUATION :
Ni +2(aq) + 2(NO3) -1(aq) + 2Na +1(aq) + 2OH -1(aq)
→ Ni(OH)2 (s) + 2Na +1(aq) + 2(NO3) -1(aq)
sorry there is no space to write the reaction in one line...
It results in a combustion reaction
Answer:
Normalidad = 4N
%p/V = 27.6%
Explanation:
La solución 2M de carbonato de potasio contiene 2moles de carbonato por litro de solución. La normalidad son los equivalente de carbonato de potasio (2eq/mol) por litro de solución:
2moles * (2eq/mol) = 4eq / 1L = 4N
El porcentaje peso volumen es el peso de carbonato en gramos dividido en el volumen en mL por 100:
%p/V:
Masa K2CO3 -Masa molar: 138.205g/mol-
2moles * (138.205g/mol) = 276g K2CO3
Volumen:
1L * (1000mL/1L) = 1000mL
%p/V:
276g K2CO3 / 1000mL * 100
<h3>%p/V = 27.6%</h3>
The important thing to note is the reason why electron react is due to the instability of the electrons. All elements wants to aim the electron configuration of the noble gases. This is the most stable form in which each of the orbitals are sufficiently filled. When it comes to bonding, the order of reactivity is: alkynes > alkenes > alkanes. Alkynes are compounds with triple bonds, alkenes with double bonds and alkanes with single bonds. The single bonds are called saturated hydrocarbons. This is because they have reached stability, so it is quite difficult to react this with reducing or oxidizing agents. Alkynes and alkenes are unsaturated hydrocarbons. They readily react with reducing and oxidizing agents so as to become saturated, as well. The underlying principle for this is that single bonds contain sigma bonds which is the head-on overlapping of electrons. These is the strongest type of covalent bond. Double and triple bonds contain pi bonds which is the side overlapping of electrons orbitals. Hence, these electrons would be easily separated making it more reactive especially during protonation.