The answer is “Only some of the molecules of a weak base dissociate to produce hydroxide ions when mixed with water, but all of the molecules of a strong base dissociate to produce hydroxide ions”
<u>36 ml of NaOh and</u><u> 464 ml</u><u> of </u><u>HCOOH</u><u> would be enough to form 500 ml of a buffer with the same pH as the buffer made with </u><u>benzoic acid </u><u>and NaOH.</u>
What is benzoic acid found in?
- Some natural sources of benzoic acid include: Fruits: Apricots, prunes, berries, cranberries, peaches, kiwi, bananas, watermelon, pineapple, oranges.
- Spices: Cinnamon, cloves, allspice, cayenne pepper, mustard seeds, thyme, turmeric, coriander.
Calculate the amount of moles in NaOH and benzoic acid. This calculation is done by multiplying molarity by volume.
Amount of moles of NaOH -2 × 0.025 = 0.05 mol
Amount of moles of benzoic acid 2 × 0.475 = 0.095 mol
In this case, we can calculate the pH produced by the buffer of these two reagents, as follows


We must repeat this calculation, with the values shown for HCOOH and NaOH. In this case, we can calculate as follows




Now we must solve the equation above. This will be done using the following values

With these values, we can calculate the volumes of NaOH and HCOOH needed to make the buffer.
NaOH volume
( 0.5 - 0.464)L
0.036L .................... 36ml
HCOOH volume
500 - 36 = 464mL
Learn more about benzoic acid
brainly.com/question/24052816
#SPJ4
Waves interact with matter in several ways. The interactions occur when waves pass from one medium to another. Besides bouncing back like an echo, waves may bend or spread out when they strike a new medium. These three ways that waves may interact with matter are called reflection, refraction, and diffraction.
Answer is: 2,0,0,±1/2.
1) n = 1. The principal quantum number (n) is one of four quantum numbers which are assigned to each electron in an atom to describe that electron's state.
2) l = 0. The azimuthal quantum number is a quantum number for an atomic orbital that determines its orbital angular momentum and describes the shape of the orbital.
3) ml = 0. Magnetic quantum number specify orientation of electrons in magnetic field and number of electron states (orbitals) in subshells.
Magnetic quantum number (ml) specifies the orientation in space of an orbital of a given energy and shape . Magnetic quantum number divides the subshell into individual orbitals which hold the electrons, there are 2l+1 orbitals in each subshell.
4) The spin quantum number, ms, is the spin of the electron; ms = +1/2 or -1/2.