(a) the principle of aerodynamic convergence
(b) the centripetal force
(c) Conservation of angular momentum
(d) Conservation of kinetic energy
(e) None of these
Conservation of angular momentum
Answer: Option C.
<u>Explanation:</u>
The law of conservation of angular momentum expresses that when no outer torque follows up on an article, no difference in precise force will happen.
The law of conservation of angular momentum expresses that the angular energy of a body that is the result of its snapshot of latency about the hub of revolution and its rakish speed about a similar pivot, can't change except if an outside torque follows up on the framework.
Answer:
6.5e-4 m
Explanation:
We need to solve this question using law of conservation of energy
Energy at the bottom of the incline= energy at the point where the block will stop
Therefore, Energy at the bottom of the incline consists of the potential energy stored in spring and gravitational potential energy=
Energy at the point where the block will stop consists of only gravitational potential energy=
Hence from Energy at the bottom of the incline= energy at the point where the block will stop
⇒
⇒
Also 
where
is the mass of block
is acceleration due to gravity=9.8 m/s
is the difference in height between two positions
⇒
Given m=2100kg
k=22N/cm=2200N/m
x=11cm=0.11 m
∴
⇒
⇒
⇒h=0.0006467m=
Answer:
L = 8694 Kg.m²/s
Explanation:
r = 270 ĵ m
v = 14 î m/s
m = 2.3 kg
θ = 90º
L = ?
We can apply the equation
L = m*v*r*Sin θ
L = (2.3 kg)*(14 m/s)*(270 m)*Sin 90º = 8694 Kg.m²/s
Answer:
(a) 8.362 rad/sec
(b) 6.815 m/sec
(c) 9.446 
(d) 396.22 revolution
Explanation:
We have given that diameter d = 1.63 m
So radius 
Angular speed N = 79.9 rev/min
(a) We know that angular speed in radian per sec

(b) We know that linear speed is given by

(c) We have given final angular velocity 
And 
Time t = 63 sec
Angular acceleration is given by 
(d) Change in angle is given by

The term saturated solution is used in chemistry to define a solution in which no more solute can be dissolved in the solvent. It is understood that saturation of the solution has been achieved when any additional substance that is added results in a solid precipitate or is let off as a gas.