I think D. It starts at (0.0) and goes to the correct points so it makes sense
The inner planets are the planets before the asteroid belt. They are also closer to the Sun. The outer planets are the ones after the asteroid belt. <span />
Answer:
L = 0.635m
Explanation:
This problem involves the concept of stationary waves in pipes. For pipes closed at one end,
The frequency f = nv/4L for n = 1,3,5....n
For pipes open at both ends
f = nv/2L for n = 1,2,3,4...n
Assuming the pipe is closed at one end and that velocity of sound is 343m/s in air. If we are right we will obtain a whole number for n.
The film solution can be found in the attachment below.
Assuming that the object starts at rest, we know the following values:
distance = 25m
acceleration = 9.81m/s^2 [down]
initial velocity = 0m/s
we want to find final velocity and we don't know the time it took, so we will use the kinematics equation without time in it:
Velocity final^2 = velocity initial^2 + 2 × acceleration × distance
Filling everythint in, we have:
Vf^2 = 0^2 + (2)(-9.81)(-25)
The reason why the values are negative is because they are going in the negative direction
Vf^2 = 490.5
Take the square root of that
Final velocity = 22.15m/s which is answer c