I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer:
Approximately 22.37 days, will it take for the water to be safe to drink.
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
k is rate constant
Given that:- k = 0.27 (day)⁻¹
= 0.63 mg/L
mg/L
Applying in the above equation as:-



<u>Approximately 22.37 days, will it take for the water to be safe to drink.</u>
Answer:
the first thing you do is do your experiment then title it. then state the purpose of the experiment. included a summary of the experiment. make a list of the materials you used. present all the steps in order to make the experiment possible. note any changes to the original procedure. this is basically the steps you have to do in order to make your scientific experiment.