16-18= -2 so it has a negative charge. Just subtract the electrons from the protons if you get a positive number it will have a positive charge and vice versa.
Answer:
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
Explanation:
The half-life time = the time required for a quantity to reduce to half of its initial value. Half of it's value = 50%.
To calculate the half-life time we use the following equation:
[At]=[Ai]*e^(-kt)
with [At] = Concentration at time t
with [Ai] = initial concentration
with k = rate constant
with t = time
We want to know the half-life time = the time needed to have 50% of it's initial value
50 = 100 *e^(-8.7 *10^-3 s^- * t)
50/100 = e^(-8.7 *10^-3 s^-1 * t)
ln (0.5) = 8.7 *10^-3 s^-1 *t
t= ln (0.5) / -8.7 *10^-3 = 79.67 seconds
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
Answer:
Pottasium reacts with water vigorously and the reation is exothermic. The heat released causes the hydrogen released to ignite
Explanation:
Answer:
First of all, the equation is typed wrong so it can easily be misinterpreted
Ethane (CH4) + Oxygen gas (O2) would give us Carbon Dioxide (CO2) and WATER (H2O)
CH4 + 2O2 -----> CO2 + 2H2O
And this is a combustion reaction since we have oxygen as a reactant and carbon dioxide and water as products.