Answer:
The frictional force acting on the block is 14.8 N.
Explanation:
Given that,
Weight of block = 37 N
Coefficients of static = 0.8
Kinetic friction = 0.4
Tension = 24 N
We need to calculate the maximum friction force
Using formula of friction force

Put the value into the formula


So, the tension must exceeds 29.6 N for the block to move
We need to calculate the frictional force acting on the block
Using formula of frictional force

Put the value in to the formula


Hence, The frictional force acting on the block is 14.8 N.
The last one, Kinetic energy bc it is taking them to school
<span>5.98 x 10^-2 ohms.
Resistance is defined as:
R = rl/A
where
R = resistance in ohms
r = resistivity (given as 1.59x10^-8)
l = length of wire.
A = Cross sectional area of wire.
So plugging into the formula, the known values, including the area of a circle being pi*r^2, gives:
R = 1.59x10^-8 * 3.00 / (pi * (5.04 x 10^-4)^2)
R = (4.77 x 10^-8) / (pi * 2.54016 x 10 ^-7)
R = (4.77 x 10^-8) / (7.98015 x 10^-7)
R = 5.98 x 10^-2 ohms
So that wire has a resistance of 5.98 x 10^-2 ohms.</span>
If the box is moving at constant velocity, net force must be zero, so:
F + fr = 0
fr = -F
<u>fr = -40 N</u>