Answer:
a) Not Accurate
b) Not Accurate
c) Accurate
d) Accurate
Explanation:
Part a
Not Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m
Part b
Not Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m
Part c
Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m by varying the phase difference between two waves she can achieve the desired results.
Part d
Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m by varying the phase difference between two waves she can achieve the desired results.
Answer:
The gravitational acceleration of a planet of mass M and radius R
a = G*M/R^2.
In this case we have:
G = 6.67 x 10^-11 N (m/kg)^2
R = 2.32 x 10^7 m
M = 6.35 x 10^30 kg
Now we can compute:
a = (6.67*6.35/2.32^2)x10^(-11 + 30 - 2*7) m/s^2 = 786,907.32 m/s^2
The acceleration does not depend on the mass of the object.
Answer:
4.2s
Explanation:
Given parameters:
Power = 2190W
Mass of box = 1.47 x 10⁴g
distance = 6.34 x 10⁴mm
Unknown:
Time = ?
Solution:
Power is the rate at which work is done;
Mathematically;
Power =
Time =
Work done = weight x height
convert mass to kg;
100g = 1kg;
1.47 x 10⁴g = 14.7kg
convert the height to m;
1000mm = 1m
6.34 x 10⁴mm gives 63.4m
Work done = 14.7 x 9.8 x 63.4 = 9133.4J
Time taken =
= 4.2s
Still go straight but would obviously go up in speed!!
Hope this helps plz mark as brainlist and 5 star
Kinetic energy has nothing to do with anything other than motion of the particle.
When a particle with velocity v collides another particle(suppose it is at rest for simplication), assuming that there is perfectly elastic collision between them, the velocity of particle which was at rest becomes mv/M ( assuming mass of particle in motion to be m and at rest to be M) from convervation of linear momentum. And all this transfer of energy happens in a fraction of seconds which is not visible to naked eyes.
Hence 1st option is correct!