Answer:
U = 1 / r²
Explanation:
In this exercise they do not ask for potential energy giving the expression of force, since these two quantities are related
F = - dU / dr
this derivative is a gradient, that is, a directional derivative, so we must have
dU = - F. dr
the esxresion for strength is
F = B / r³
let's replace
∫ dU = - ∫ B / r³ dr
in this case the force and the displacement are parallel, therefore the scalar product is reduced to the algebraic product
let's evaluate the integrals
U - Uo = -B (- / 2r² + 1 / 2r₀²)
To complete the calculation we must fix the energy at a point, in general the most common choice is to make the potential energy zero (Uo = 0) for when the distance is infinite (r = ∞)
U = B / 2r²
we substitute the value of B = 2
U = 1 / r²
Answer:
Explanation:
Magnitude of frictional force = μ mg
μ is either static or kinetic friction.
To start the crate moving , static friction is calculated .
a ) To start crate moving , force required = μ mg where μ is coefficient of static friction .
force required =.517 x 56.6 x 9.8 = 286.76 N .
b ) to slide the crate across the dock at a constant speed , force required
= μ mg where μ is coefficient of kinetic friction , where μ is kinetic friction
= .26 x 56.6 x 9.8 = 144.21 N .
The direction in which the magnetic force is acting on the charge is upwards.
<h3>What is Magnetic force?</h3>
This is the attraction and repulsion which usually occurs during the motion of electrically charged particles.
In the magnetic field, the charge is moving to the left. Therefore the direction the magnetic force is acting on the charge is upwards which is gotten via right hand rule.
Read more about Magnetic force here brainly.com/question/25932320
#SPJ1
<u>Answer:</u> The energy released in the given nuclear reaction is 3.526 MeV.
<u>Explanation:</u>
For the given nuclear reaction:

We are given:
Mass of
= 41.962403 u
Mass of
= 41.958618 u
To calculate the mass defect, we use the equation:

Putting values in above equation, we get:

To calculate the energy released, we use the equation:

(Conversion factor:
)

Hence, the energy released in the given nuclear reaction is 3.526 MeV.
Answer:
The correct option is "In order to gain more power you would need to increase either current or voltage."
Explanation:
To answer the question, we note that;
The formula for Electrical Power are as follows,
P = I²·R, or P = I·V,
Therefore, if we increase either the current, I with the voltage, V remaining constant or we increase the Voltage, V with the current, I remaining constant or we increase both the voltage, V an the current, I the Power, P will be increased.
Therefore, the correct option is "In order to gain more power you would need to increase either current or voltage."