Lolilolololilolollololililili
<span>5.82 x 10-49 joules7.62 x 10-19 joules8.77 x 10-12 joules1.09 x 10-12<span> joules </span><span>answer is b</span></span>
Answer:
Yes
Explanation:
There is a position that works better than this and that is switching the sides of the forks.
Answer:
The answer to your question is letter B.
Explanation:
To answer this question, we must remember the third law of motion of Newton that states that For every action, there is an equal and opposite reaction.
Then, if the action force is 40 N to the right, the reaction force must be 40 N to the left.
Answer:
In a tuning fork, two basic qualities of sound are considered, they are
1) The pitch of the waveform: This pitch depends on the frequency of the wave generated by hitting the tuning fork.
2) The loudness of the waveform: This loudness depends on the intensity of the wave generated by hitting the tuning fork.
Hitting the tuning fork harder will make it vibrate faster, increasing the number of vibrations per second. The number of vibration per second is proportional to the frequency, so hitting the tuning fork harder increase the frequency. From the explanation on the frequency above, we can say that by increasing the frequency the pitch of the tuning fork also increases.
Also, hitting the tuning fork harder also increases the intensity of the wave generated, since the fork now vibrates faster. This increases the loudness of the tuning fork.