Answer:
Three double bonds and no lone pairs of electrons- trigonal planar
Two single bonds and two lone pairs of electrons-bent
Five single bonds and no lone pairs of electrons- trigonal bipyramidal
Three single bonds and one lone pair of electrons- trigonal pyramidal
Two double bonds and no lone pairs of electrons - linear
Four single bonds and no lone pairs of electrons- tetrahedral
Six single bonds and no lone pairs of electrons- octahedral
Explanation:
The valence shell electron pair repulsion theory gives a description of the shape of a molecule based on the number of regions of electron density present on the valence shell of the central atom of the molecule.
The molecules are distorted away from the shape predicted on the basis of the VSEPR by the presence of lone pairs on the valence shell of the central atom in the molecule. In the absence of lone pairs, the shape of a molecule is exactly the shape predicted on the basis of the VSEPR theory.
When two element combine to form more than one compound i hope this helps you with work have a nice day :)
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
![rate= k[P]^{2} [Q]\\=>[Q]=\frac{rate}{k.[P]^{2} } \\and \\\\\\\ [P]=\sqrt{\frac{rate}{k.[Q]} }](https://tex.z-dn.net/?f=rate%3D%20k%5BP%5D%5E%7B2%7D%20%5BQ%5D%5C%5C%3D%3E%5BQ%5D%3D%5Cfrac%7Brate%7D%7Bk.%5BP%5D%5E%7B2%7D%20%7D%20%5C%5Cand%20%5C%5C%5C%5C%5C%5C%5C%20%5BP%5D%3D%5Csqrt%7B%5Cfrac%7Brate%7D%7Bk.%5BQ%5D%7D%20%7D)
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
![k=\frac{rate}{[P]^{2}[Q] } \\ =\frac{4.8*10^-3}{(0.2)^{2} 2. (0.30)} \\ =0.4](https://tex.z-dn.net/?f=k%3D%5Cfrac%7Brate%7D%7B%5BP%5D%5E%7B2%7D%5BQ%5D%20%7D%20%5C%5C%20%20%3D%5Cfrac%7B4.8%2A10%5E-3%7D%7B%280.2%29%5E%7B2%7D%202.%20%280.30%29%7D%20%5C%5C%20%3D0.4)
Second row:
2. Rate value:

3.Third row:
![[Q]=\frac{rate}{k.[P]^{2} } \\ =9.6*10^-3 / (0.4 *(0.40)^{2} \\ =0.15mol.dm^{-3}](https://tex.z-dn.net/?f=%5BQ%5D%3D%5Cfrac%7Brate%7D%7Bk.%5BP%5D%5E%7B2%7D%20%7D%20%5C%5C%20%20%20%20%20%3D9.6%2A10%5E-3%20%2F%20%280.4%20%2A%280.40%29%5E%7B2%7D%20%5C%5C%20%20%20%20%3D0.15mol.dm%5E%7B-3%7D)
4. Fourth row:
![[P]=\sqrt{\frac{rate}{k.[Q]} }\\=>[P]=\sqrt{\frac{19.2*10^-3}{0.60*0.4} } \\=>[P]=0.283mol.dm^{-3}](https://tex.z-dn.net/?f=%5BP%5D%3D%5Csqrt%7B%5Cfrac%7Brate%7D%7Bk.%5BQ%5D%7D%20%7D%5C%5C%3D%3E%5BP%5D%3D%5Csqrt%7B%5Cfrac%7B19.2%2A10%5E-3%7D%7B0.60%2A0.4%7D%20%7D%20%5C%5C%3D%3E%5BP%5D%3D0.283mol.dm%5E%7B-3%7D)
Answer:
Explanation:
the chemical equilibrium constant can be easily calculated since the concentrations at equilibrium are given.the calculation shows the value of Kc for the reversible reaction and forward reaction
Stars have a life cycle, just like people: they are born, grow, change over time, and eventually grow old and die. Most stars change in size, color, and class at least once in their lifetime.
Brainliest?