Answer:
494.1 kPa
Explanation:
Using the combined gas law equation;
P1V1/T1 = P2V2/T2
Where;
P1 = initial pressure (kPa)
P2 = final pressure (kPa)
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the information provided in this question,
P1 = 294 kPa
P2 = ?
V1 = 42.9 liters
V2 = 22.8 liters
T1 = 76.0°C = 76 + 273 = 349K
T2 = 38.7°C = 38.7 + 273 = 311.7K
294 × 42.9/349 = P2 × 22.8/311.7
12612.6/349 = 22.8 P2/311.7
36.14 = 22.8P2/311.7
Cross multiply
36.14 × 311.7 = 22.8P2
11264.605 = 22.8P2
P2 = 11264.605 ÷ 22.8
P2 = 494.1 kPa
The equilibrium expression shows the ratio between
products and reactants. This expression is equal to the concentration of the
products raised to its coefficient divided by the concentration of the
reactants raised to its coefficient. The correct equilibrium expression for the
given reaction is:<span>
<span>H2CO3(aq) + H2O(l) = H3O+(aq) + HCO3-1(aq)
Kc = [HCO3-1] [H3O+] / [H2O] [H2CO3]</span></span>
Magnesium bromide= MgBr2
Potassium chloride= KCl
To calculate the pH of a solution that has a [H3O+] of 7.22x10^-7. You would do the following
pH=-log[H3O+]
pH=-log[7.22x10^-7]
pH=?
Answer:
1..... nucleus
2......electron cloud
3.......protons
4........Neutrons
5..........electron
6............electrons
7...............Isotopes
8.....,...........ions
9....................charge