Answer:
6 cm long
Explanation:
F = 4110N
Vo(speed of sound) = 344m/s
Mass = 7.25g = 0.00725kg
L = 62.0cm = 0.62m
Speed of a wave in string is
V = √(F / μ)
V = speed of the wave
F = force of tension acting on the string
μ = mass per unit density
F(n) = n (v / 2L)
L = string length
μ = mass / length
μ = 0.00725 / 0.62
μ = 0.0116 ≅ 0.0117kg/m
V = √(F / μ)
V = √(4110 / 0.0117)
v = 592.69m/s
Second overtone n = 3 since it's the third harmonic
F(n) = n * (v / 2L)
F₃ = 3 * [592.69 / (2 * 0.62)
F₃ = 1778.07 / 1.24 = 1433.927Hz
The frequency for standing wave in a stopped pipe
f = n (v / 4L)
Since it's the first fundamental, n = 1
1433.93 = 344 / 4L
4L = 344 / 1433.93
4L = 0.2399
L = 0.0599
L = 0.06cm
L = 6cm
The pipe should be 6 cm long
Answer:
26.6 m/s
Explanation:
Given:
Δy = 2.1 m
t = 5.35 s
a = -9.8 m/s²
Find: v₀
Δy = v₀ t + ½ at²
(2.1 m) = v₀ (5.35 s) + ½ (-9.8 m/s²) (5.35 s)²
v₀ = 26.6 m/s
many increases and decreases but declined overall
Answer:
- 9 J
Explanation:
The work done by an object can be found by using the formula
workdone = force × distance
From the question we have
workdone = 6 × 1.5
We have the final answer as
<h3>9 J</h3>
Hope this helps you
20c because te mass of the object is larger than the table