Answer:
No, it is not attracted.
Explanation:
If any sphere is electrically neutral it is not attracted. The materials which are attracted by magnet are called magnetic material whereas which are not attracted are called non magnetic material. Sphere made up of non magnetic materials such as glass, wood, paper will not attracted weather is kept near north pole or near south pole.
Answer:
v = 15.8 m/s
Explanation:
Let's analyze the situation a little, we have a compressed spring so it has an elastic energy that will become part kinetic energy and a potential part for the man to get out of the barrel, in addition there is a friction force that they perform work against the movement. So the variation of mechanical energy is equal to the work of the fictional force
= ΔEm =
-Em₀
Let's write the mechanical energy at each point
Initial
Em₀ = Ke = ½ k x²
Final
= K + U = ½ m v² + mg y
Let's use Hooke's law to find compression
F = - k x
x = -F / k
x = 4400/1100
x = - 4 m
Let's write the energy equation
fr d = ½ m v² + mgy - ½ k x²
Let's clear the speed
v² = (fr d + ½ kx² - mg y) 2 / m
v² = (40 4.00 + ½ 1100 4² - 60.0 9.8 2.50) 2/60.0
v² = (160 + 8800 - 1470) / 30
v = √ (229.66)
v = 15.8 m/s
Distance of fall from rest,
without air resistance = (1/2) (gravity) (time)²
= (1/2) (9.8 m/s²) (95 sec)²
= (4.9 m/s²) (9,025 sec²)
= 44,222.5 meters .
The depth of the mine shaft is five times the height of Mt. Everest !
Answer:
Detailed step wise solution is attached below
Explanation:
(a) wavelength of the initial note 2.34 meters
(b) wavelength of the final note 0.389 meters
(d) pressure amplitude of the final note 0.09 Pa
(e) displacement amplitude of the initial note 4.78*10^(-7) meters
(f) displacement amplitude of the final note 3.95*10^(-8) meters
Answer:
Increases
Explanation:
The expression for the capacitance is as follows as;

Here, C is the capacitance,
is the permittivity of free space, A is the area and d is the distance between the parallel plate capacitor.
It can be concluded from the above expression, the capacitance is inversely proportional to the distance. According to the given problem, the capacitor is disconnected from the battery and the distance between the plates is increased. Then, the capacitance of the given capacitor will decrease in this case.
The expression for the energy stored in the parallel plate capacitor is as follows;

Here, E is the energy stored in the capacitor, C is the capacitance and Q is the charge.
Energy stored in the given capacitor is inversely proportional to the capacitor. The charge on the capacitor is constant. In the given problem, as the distance between the parallel plates is being separated, the energy stored in this capacitor increases.
Therefore, the option (c) is correct.