Answer:
angular range is ( 0.681 rad , 0.35 rad )
Explanation:
given data
wavelength λ = 380 nm = 380 ×
m
wavelength λ = 700 nm = 700 ×
m
to find out
angular range of the first-order
solution
we will apply here slit experiment equation that is
d sinθ = m λ ...........1
here m is 1 for single slit and d is = 
so put here value in equation 1 for 380 nm
we get
d sinθ = m λ
sinθ = 1 × 380 × 
θ = 0.35 rad
and for 700 nm
we get
d sinθ = m λ
sinθ = 1 × 700 × 
θ = 0.681 rad
so angular range is ( 0.681 rad , 0.35 rad )
Answer:

Explanation:
This is a uniformly accelerated motion, so we can determine the deceleration of the car by using a suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the car in this problem,
u = 27.8 m/s
v = 0
s = 17 m
Solving for a, we find the acceleration:

Answer:
Explanation:
Let Torque due to friction be
F
Net torque
= 46 - F
Angular impulse = change in angular momentum
=( 46 - F ) x 17 = I X 580
When external torque is removed , only friction creates torque reducing its speed to zero in 120 s so
Angular impulse = change in angular momentum
F x 120 = I X 580
( 46 - F ) x 17 = F x 120
137 F = 46 x 17
F = 5.7 Nm
b )
Putting this value in first equation
5.7 x 120 = I x 580
I = 1.18 kg m²