Answer:
One with a few kinds is more likely to become unstable.
Explanation:
A lack of biodiversity means there is a lower chance of them having traits that enable them to adapt to a changing environment. A lack of biodiversity is usually caused by humans. It could be the result of habitat loss, invasive species, overexploitation, pollution, or climate change.
Missing question:
A. [3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s)] / 2
<span>B. 3.40 mol Fe2O3 (s) × 26.3 kJ/1 mol Fe2O3 (s) </span>
<span>C. 26.3 kJ/1 mol Fe2O3 (s) / 3.40 mol Fe2O3 (s) </span>
<span>D. 26.3 kJ/1 mol Fe2O3 (s) – 3.40 mol Fe2O3 (s).
</span>Answer is: B.
Chemical reaction: F<span>e</span>₂O₃<span>(s) + 3CO(g) → 2Fe(s) + 3CO</span>₂<span>(g);</span>ΔH = <span>+ 26.3 kJ.
When one mole of iron(III) oxide reacts 26,3 kJ of energy is required and for 3,2 moles of iron(III) oxide 3,2 times more energy is required.</span>
The answer is 34.1 mL.
Solution:
Assuming ideal behavior of gases, we can use the universal gas law equation
P1V1/T1 = P2V2/T2
The terms with subscripts of one represent the given initial values while for terms with subscripts of two represent the standard states which is the final condition.
At STP, P2 is 760.0torr and T2 is 0°C or 273.15K. Substituting the values to the ideal gas expression, we can now calculate for the volume V2 of the gas at STP:
(800.0torr * 34.2mL) / 288.15K = (760.0torr * V2) / 273.15K
V2 = (800.0torr * 34.2mL * 273.15K) / (288.15K * 760.0torr)
V2 = 34.1 mL
Answer:
\left \{ {{y=206} \atop {x=82}}Pb \right.
Explanation:
isotopes are various forms of same elements with different atomic number but different mass number.
Radioactivity is the emission of rays or particles from an atom to produce a new nuclei. There are various forms of radioactive emissions which are
- Alpha particle emission \left \{ {{y=4} \atop {x=2}}He \right.
- Beta particle emission \left \{ {{y=0} \atop {x=-1}}e \right.
- gamma radiation \left \{ {{y=0} \atop {x=0}}γ \right.
in the problem the product formed after radiation was Pb-206. isotopes of lead include Pb-204, Pb-206, Pb-207, Pb-208. they all have atomic number 82. which means the radiation cannot be ∝ or β since both radiations will alter the atomic number of the parent nucleus.
Only gamma radiation with \left \{ {{y=0} \atop {x=0}}γ \right. will produce a Pb-206 of atomic number 82 and mass number 206 , since gamma ray have 0 mass and has 0 atomic number.equation is shown below
\left \{ {{y=206} \atop {x=82}}Pb\right ⇒ \left \{ {{y=206} \atop {x=82}}Pb\right + \left \{ {{y=0} \atop {x=0}}γ\right.
Thus the atomic symbol is \left \{ {{y=206} \atop {x=82}}Pb\right