Answer: Atoms contain tiny, negatively charged electrons
Explanation: Thomson's experiments with cathode ray tubes helped him to discover the electron (which Dalton did not know about). Dalton thought that atoms were indivisible particles, and Thomson's discovery of the electron proved the existence of subatomic particles.
The fuel released 90 calories of heat.
Let suppose that water experiments an entirely <em>sensible</em> heating. Hence, the heat released by the fuel is equal to the heat <em>absorbed</em> by the water because of principle of energy conservation. The heat <em>released</em> by the fuel is expressed by the following formula:
(1)
Where:
- Mass of the sample, in grams.
- Specific heat of water, in calories per gram-degree Celsius.
- Temperature change, in degrees Celsius.
If we know that
,
and
, then the heat released by the fuel is:

The fuel released 90 calories of heat.
We kindly invite to check this question on sensible heat: brainly.com/question/11325154
Answer:
Take E(alpha particle energy) = 5.5 MeV (5.5x106x1.6x10-19)
If the charge on the lead nucleus is +82e(atomic number of lead is 82) = +82x1.6x10-19 C and the charge on the alpha particle is +2e = 2x1.6x10-19 C
Using dc = (1/4πεo)qQ/Eα we have
dc = [9x10^9x(2x1.6x10-19x82x1.6x10-19)]/5.5x10-13 = 6.67x10^-13m. = 6.67 x 10^-13 x 10^15 = 6.67 x 10^2fm
Note: 1meter = 10^15fentometer
Explanation:
This is well inside the atom but some eight nuclear diameters from the centre of the lead nucleus.
I think the answer is tenfold
hope this helps :)
Answer:
The process describes the source of energy of the Sun such that it shines as a result of nuclear fusion of hydrogen taking place.
Explanation:
The Sun generates energy by hydrogen within the Sun undergoing nuclear fusion to form helium.
Nuclear fusion reaction involves combining of two or more atomic nuclei to produce one or more completely different atomic nuclei as well as protons or neutrons, with a loss or gain of mass and the release or absorption of energy.
The process whereby four hydrogen atoms combine to form one helium atom with a mass deficit, which is accounted for by the release of energy, result in the high intense light of the Sun.