1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pychu [463]
3 years ago
15

How do we calculate the "range" of the measurements?

Physics
1 answer:
Alika [10]3 years ago
8 0

Answer: I think its A

Explanation:

If not, what is the answer, beause I'm on the same quiz.

You might be interested in
The circuit contains a filament bulb, connected with ........ to a ........
Katyanochek1 [597]

Answer:

The circuit contains a filament bulb, connected with terminal to a terminal.

Explanation:

The base of the electric bulb and the metal tip of the base are the two terminals of the bulb. One is called a positive terminal while the other is called a negative terminal. The filament of the electric bulb is connected to its terminals.

8 0
3 years ago
Suppose there are two transformers between your house and the high-voltage transmission line that distributes the power. In addi
storchak [24]

Answer:240-v

Explanation:

8 0
4 years ago
A radar station detects an airplane approaching directly from the east. At first observation, the range to the plane is 375.0 m
Gekata [30.6K]

Answer:

819.78 m

Explanation:

<u>Given:</u>

  • OA = range of initial position of the airplane from the point of observation = 375 m
  • OB = range of the final position of the airplane from the point of observation = 797 m
  • \theta = angle of the initial position vector from the observation point = 43^\circ
  • \alpha = angle of the final position vector from the observation point = 123^\circ
  • \vec{AB} = displacement vector from initial position to the final position

A diagram has been attached with the solution in order to clearly show the position of the plane.

\vec{OA} = OA\cos \theta \hat{i}+OA \sin \theta \hat{j}\\\Rightarrow \vec{OA} = 375\ m\cos 43^\circ \hat{i}+375\ m\sin 43^\circ \hat{j}\\\Rightarrow \vec{OA} = (274.26\ \hat{i}+255.75\ \hat{j})\ m\\\vec{OB} = OB\cos \alpha \hat{i}+OB \sin \alpha \hat{j}\\\Rightarrow \vec{OB} = 797\ m\cos 123^\circ \hat{i}+797\ m\sin 123^\circ \hat{j}\\\Rightarrow \vec{OB} = (-434.08\ \hat{i}+668.42\ \hat{j})\ m

Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:

\vec{AB}=\vec{OB}-\vec{OA}\\\Rightarrow \vec{AB} =  (-434.08\ \hat{i}+668.42\ \hat{j})\ m-(274.26\ \hat{i}+255.75\ \hat{j})\ m\\\Rightarrow \vec{AB} =  (-708.34\ \hat{i}+412.67\ \hat{j})\ m

The magnitude of the displacement vector = \sqrt{(-708.34)^2+(412.67)^2}\ m = 819.78\ m

Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.

8 0
3 years ago
A high-temperature, gas-cooled nuclear reactor consists of a composite, cylindrical wall for which a thorium fuel element (kth =
WARRIOR [948]

Answer:

a) T_1 = 938 K , T_2 = 931 K

b) To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

Explanation:

Given:

- See the attachment for the figure for this question.

- Melting point of Thorium T_th = 2000 K

- Melting point of Thorium T_g = 2300 K

Find:

a) If the thermal energy is uniformly generated in the fuel element at a rate q = 10^8 W/m^3 then what are the temperatures T_1 and T_2 at the inner and outer surfaces, respectively, of the fuel element?

b) Compute and plot the temperature distribution in the composite wall for selected values of q.  What is the maximum allowable value of q.

Solution:

part a)

- The outer surface temperature of the fuel, T_2, may be determined from the rate equation:

                                 q*A_th = T_2 - T_inf / R'_total

Where,

           A_th: Area of the thorium section

           T_inf: The temperature of coolant = 600 K

           R'_total: The resistance per unit length.

- Calculate the resistance per unit length R' from thorium surface to coolant:

           R'_total = Ln(r_3/r_2) / 2*pi*k_g + 1 / 2*pi*r_3*h

Plug in values:

           R'_total = Ln(14/11) / 2*pi*3 + 1 / 2*pi*0.014*2000

           R'_total = 0.0185 mK / W

- And the heat rate per unit length may be determined by applying an energy balance to a control surface  about the fuel element. Since the interior surface of the element is essentially adiabatic, it follows that:

           q' = q*A_th = q*pi*(r_2^2 - r_1^2)

           q' = 10^8*pi*(0.011^2 - 0.008^2) = 17,907 W / m

Hence,

           T_2 = q' * R'_total + T_inf

           T_2 = 17,907*0.0185 + 600

          T_2 = 931 K

- With zero heat flux at the inner surface of the fuel element, We will apply the derived results for boundary conditions as follows:

 T_1 = T_2 + (q*r_2^2/4*k_th)*( 1 - (r_1/r_2)^2) - (q*r_1^2/2*k_th)*Ln(r_2/r_1)

Plug values in:

 T_1 = 931+(10^8*0.011^2/4*57)*( 1 - (.8/1.1)^2) - (10^8*0.008^2/2*57)*Ln(1.1/.8)

 T_1 = 931 + 25 - 18 = 938 K

part b)

The temperature distributions may be obtained by using the IHT model for one-dimensional, steady state conduction in a hollow tube. For the fuel element (q > 0),  an adiabatic surface condition is  prescribed at r_1 while heat transfer from the outer surface at r_2 to the coolant is governed by the thermal  resistance:

                              R"_total = 2*pi*r_2*R'_total

                              R"_total = 2*pi*0.011*0.0185 = 0.00128 m^2K/W

- For the graphite ( q = 0 ), the value of T_2 obtained from the foregoing solution is prescribed as an inner boundary condition at r_2, while a convection condition is prescribed at the outer surface (r_3).

- For 5*10^8 < q and q > 5*10^8, the distributions are given in attachment.

The graphs obtained:

- The comparatively large value of k_t yields small temperature variations across the fuel element,  while the small value of k_g results in large temperature variations across the graphite.

Operation  at q = 5*10^8 W/^3  is clearly unacceptable, since the melting points of thorium and graphite are exceeded  and approached, respectively. To prevent softening of the materials, which would occur below their  melting points, the reactor should not be operated much above:

                                      q = 3*10^8 W/m^3

6 0
3 years ago
Who received a patent for the first automobile
madreJ [45]
Ford was the first person to receive this patent.
8 0
3 years ago
Other questions:
  • A submarine is 3.00 x 10^2 m horizontally from shore and 120.0 m beneath the surface of the water. A laser beam is sent from the
    7·1 answer
  • It is difficult to extinguish a fire on a crude oil tanker, because each liter of crude oil releases 2.80 × 107 J of energy when
    7·1 answer
  • Saturn has an orbital period of 29.46 years. In two or more complete sentences, explain how to calculate the average distance fr
    12·1 answer
  • A 1.55 kg falcon catches a 0.415 kg dove from behind in midair. What is their velocity after impact if the falcon's velocity is
    11·1 answer
  • an 100kg object traveling at 50m/s collides (perfectly inelastic) with a 50kg object initially at rest. what is the sum of the m
    10·1 answer
  • A skateboader is accelerating forward how would his acceleration change if he had more mass
    14·1 answer
  • Need help, please :D.
    8·1 answer
  • If the frequency of a wave is 0.25 Hz, what is its period?
    12·1 answer
  • Will mark brainliest if correct
    12·1 answer
  • Are the two bulbs acting as current dividers or potential dividers? Explain your answer​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!