Answer: 14943.5 J
Explanation:
The quantity of heat energy (Q) required to raise the temperature of a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)
Thus, Q = MCΦ
Given that,
Q = ?
Mass of water = 55.0g
C = 4.18 J/g°C
Φ = 65.0°C
Then, Q = MCΦ
Q = 55.0g x 4.18 J/g°C x 65.0°C
Q = 14943.5 J
Thus, 14943.5 joules of heat is needed to raise the temperature of water.
Atoms or molecule after gaining of electron possesses negative charge and is known as anion.
For the given sets:
The given elements are alkali metals and have tendency to lose electrons easily and form cations.
The given elements are non-metals and are electronegative. So, they gain electrons easily and form anion.
Carbon has tendency to form bond by sharing of electrons, Sulfur has tendency to gain electrons and form anion whereas Lead has tendency to lose electron.
Potassium and Iron has tendency to lose electron and form cation whereas Bromine has tendency to gain electron to form anion.
Hence, from the given sets, all elements of set:
have tendency to form anions in binary ionic compounds.
Answer:
The balanced equation for this reaction will be
→ 
We can see that 1 mole of methane requires 4 moles of fluorine but we have 0.41 moles of CH4 and 0.56mole of F2
So using the unitary method we will get that
- 1 mole of CH4 → 4 mole of 4 mole of fluorine
- 0.41 mole of methane → 4*0.41 = 1.64 mole of fluorine for complete reaction
but we have only 0.56 mole of fluorine that means fluorine is the limiting reagent and the product will only be formed by only this amount of fluorine.
- 4 moles of fluorine → 1 mole of CF4
- 0.56 mole →
= 0.14mole of CF4
- 4 moles of fluorine → 4 moles of HF
- 0.56 mole of fluorine → 0.56 mole of HF
now to find the heat released we have the formula as
DELTA H = n * Delta H of product - n *delta H of reactant
where n is the moles of the reactant and product.
note: since no information is given about the enthalpies of the species we leave it on general equation also you need to add the product side enthalpy of the species present and similarly on the product side.