Explanation:
The energy stored in coal is directly form the sun which is solar energy. This energy are preserved in carbon atoms and they originate from the life processes of a plant.
- Plants carry out photosynthesis and produce their energy by this process.
- Green plants have special adapted structures by which they trap solar energy from the sun and use it to produce their own food.
- The food is used by plant for nutrition and life activities.
- In essence the solar energy is converted to chemical energy in plants.
- To form coal, when plants are rapidly buried their organic matter is preserved from decay by combination with oxygen.
- More burial preserves the complex molecules that have stored during photosynthesis.
- The carbon eventually aggregates for coal.
learn more:
Coal brainly.com/question/10055728
#learnwithBrainly
Answer:
A
Explanation:
They drove 30km north. The displacement adds up to 25km therefore making the distance greater
Hope this helps!
Answer:
T = 25 N
Explanation:
The question says that "A 25 n block is suspended by a wire from the ceiling vitamin the tension that appears in the wire
?"
Weight of the block, W = 25 N
Weight of a body acts in downward direction and tension acts in upward direction. It would mean that,
Tension = weight of the block
T = mg
T = 25 N
Hence, the tension in the wire is 25 N.
Answer:
IGNEOUS ROCKS
Explanation: Igneous rocks are those rocks that solidify from magma.
Igneous rock is divided into two ,they are:
1. Intrusive
Igneous rocks crystallized belowearth"s crust. Its cooling material is called lava.
2 Extrusive igneous rock is also known as known as volcanic rocks
Answer:
v = 17.71 m / s
Explanation:
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I
v² = 2g y₀
v = Ra (2g i)
let's calculate
v =√ (2 9.8 16)
v = 17.71 m / s