Answer:
B. the force of friction of the road on the tires
Explanation:
Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.
Light having a dual nature and acting like both a wave and a particle is the correct statement in this scenario.
<h3>What is Light?</h3>
This refers to the electromagnetic radiation found in the electromagnetic spectrum that is perceived by the human eye and has a dual nature. It doesn't require a medium for its propagation unlike sound.
The dual nature of light is as a result of it behaving like a photon which is why it travels in straight lines.
It also behave like a wave because it undergoes processes such as reflection, refraction etc which are common to waves.
Read more about Light here brainly.com/question/1363382
#SPJ1
To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

Here,
I = Current
L = Length
B = Magnetic Field
= Angle between Force and Magnetic Field
But 

Rearranging to find the Magnetic Field,

Here the force per unit length,

Replacing with our values,


Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T